BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 31927186)

  • 1. The regulating mechanisms of CO
    Li J; Tang X; Pan K; Zhu B; Li Y; Ma X; Zhao Y
    Chemosphere; 2020 May; 247():125814. PubMed ID: 31927186
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced lipid accumulation of photoautotrophic microalgae by high-dose CO2 mimics a heterotrophic characterization.
    Sun Z; Dou X; Wu J; He B; Wang Y; Chen YF
    World J Microbiol Biotechnol; 2016 Jan; 32(1):9. PubMed ID: 26712624
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The molecular mechanisms of Chlorella sp. responding to high CO
    Li J; Pan K; Tang X; Li Y; Zhu B; Zhao Y
    Sci Total Environ; 2021 Apr; 763():144185. PubMed ID: 33383507
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy metabolism and intracellular pH regulation reveal different physiological acclimation mechanisms of Chlorella strains to high concentrations of CO
    Li J; Tang X; Pan K; Zhu B; Li Y; Wang Z; Zhao Y
    Sci Total Environ; 2022 Dec; 853():158627. PubMed ID: 36087671
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving high carbon dioxide tolerance and carbon dioxide fixation capability of Chlorella sp. by adaptive laboratory evolution.
    Li D; Wang L; Zhao Q; Wei W; Sun Y
    Bioresour Technol; 2015 Jun; 185():269-75. PubMed ID: 25776894
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Screening and application of Chlorella strains on biosequestration of the power plant exhaust gas evolutions of biomass growth and accumulation of toxic agents.
    Zhao Y; Li J; Ma X; Fang X; Zhu B; Pan K
    Environ Sci Pollut Res Int; 2022 Jan; 29(5):6744-6754. PubMed ID: 34462853
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptional insights into Chlorella sp. ABC-001: a comparative study of carbon fixation and lipid synthesis under different CO
    Koh HG; Cho JM; Jeon S; Chang YK; Lee B; Kang NK
    Biotechnol Biofuels Bioprod; 2023 Jul; 16(1):113. PubMed ID: 37454088
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon dioxide (CO
    Kassim MA; Meng TK
    Sci Total Environ; 2017 Apr; 584-585():1121-1129. PubMed ID: 28169025
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Innovative nanofiber technology to improve carbon dioxide biofixation in microalgae cultivation.
    Vaz BDS; Costa JAV; Morais MG
    Bioresour Technol; 2019 Feb; 273():592-598. PubMed ID: 30481658
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous microalgal biomass production and CO
    Kuo CM; Jian JF; Lin TH; Chang YB; Wan XH; Lai JT; Chang JS; Lin CS
    Bioresour Technol; 2016 Dec; 221():241-250. PubMed ID: 27643732
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selection of microalgae for high CO2 fixation efficiency and lipid accumulation from ten Chlorella strains using municipal wastewater.
    Hu X; Zhou J; Liu G; Gui B
    J Environ Sci (China); 2016 Aug; 46():83-91. PubMed ID: 27521939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elevated CO2 concentration impacts cell wall polysaccharide composition of green microalgae of the genus Chlorella.
    Cheng YS; Labavitch JM; VanderGheynst JS
    Lett Appl Microbiol; 2015 Jan; 60(1):1-7. PubMed ID: 25163669
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biochemical trade-offs and opportunities of commercialized microalgae cultivation under increasing carbon dioxide.
    Lim YA; Ilankoon IMSK; Khong NMH; Priyawardana SD; Ooi KR; Chong MN; Foo SC
    Bioresour Technol; 2024 Feb; 393():129898. PubMed ID: 37890731
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ability of an alkali-tolerant mutant strain of the microalga Chlorella sp. AT1 to capture carbon dioxide for increasing carbon dioxide utilization efficiency.
    Kuo CM; Lin TH; Yang YC; Zhang WX; Lai JT; Wu HT; Chang JS; Lin CS
    Bioresour Technol; 2017 Nov; 244(Pt 1):243-251. PubMed ID: 28780257
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biotechnological potential of Chlorella sp. and Scenedesmus sp. microalgae to endure high CO
    Ramos-Ibarra JR; Snell-Castro R; Neria-Casillas JA; Choix FJ
    Bioprocess Biosyst Eng; 2019 Oct; 42(10):1603-1610. PubMed ID: 31190283
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biological CO
    Duarte JH; de Morais EG; Radmann EM; Costa JAV
    Bioresour Technol; 2017 Jun; 234():472-475. PubMed ID: 28342576
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pilot project at Hazira, India, for capture of carbon dioxide and its biofixation using microalgae.
    Yadav A; Choudhary P; Atri N; Teir S; Mutnuri S
    Environ Sci Pollut Res Int; 2016 Nov; 23(22):22284-22291. PubMed ID: 27032631
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impacts of CO2 concentration on growth, lipid accumulation, and carbon-concentrating-mechanism-related gene expression in oleaginous Chlorella.
    Fan J; Xu H; Luo Y; Wan M; Huang J; Wang W; Li Y
    Appl Microbiol Biotechnol; 2015 Mar; 99(5):2451-62. PubMed ID: 25620370
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coupling Carbon Capture from a Power Plant with Semi-automated Open Raceway Ponds for Microalgae Cultivation.
    Acedo M; Gonzalez Cena JR; Kiehlbaugh KM; Ogden KL
    J Vis Exp; 2020 Aug; (162):. PubMed ID: 32865530
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptive evolution and carbon dioxide fixation of Chlorella sp. in simulated flue gas.
    Cheng D; Li X; Yuan Y; Yang C; Tang T; Zhao Q; Sun Y
    Sci Total Environ; 2019 Feb; 650(Pt 2):2931-2938. PubMed ID: 30373069
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.