These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
216 related articles for article (PubMed ID: 31927368)
1. Laser-assisted preparation of Pd nanoparticles on carbon cloth for the degradation of environmental pollutants in aqueous medium. Jaleh B; Karami S; Sajjadi M; Feizi Mohazzab B; Azizian S; Nasrollahzadeh M; Varma RS Chemosphere; 2020 May; 246():125755. PubMed ID: 31927368 [TBL] [Abstract][Full Text] [Related]
2. Green synthesis of Pd nanoparticles at Apricot kernel shell substrate using Salvia hydrangea extract: Catalytic activity for reduction of organic dyes. Khodadadi B; Bordbar M; Nasrollahzadeh M J Colloid Interface Sci; 2017 Mar; 490():1-10. PubMed ID: 27870949 [TBL] [Abstract][Full Text] [Related]
3. Catalytic reduction of hexavalent chromium by a novel nitrogen-functionalized magnetic ordered mesoporous carbon doped with Pd nanoparticles. Li S; Tang L; Zeng G; Wang J; Deng Y; Wang J; Xie Z; Zhou Y Environ Sci Pollut Res Int; 2016 Nov; 23(21):22027-22036. PubMed ID: 27539474 [TBL] [Abstract][Full Text] [Related]
4. Silver nanoparticle-decorated on tannic acid-modified magnetite nanoparticles (Fe Veisi H; Moradi SB; Saljooqi A; Safarimehr P Mater Sci Eng C Mater Biol Appl; 2019 Jul; 100():445-452. PubMed ID: 30948080 [TBL] [Abstract][Full Text] [Related]
5. Facile synthesis of Cu NPs@Fe Nezafat Z; Karimkhani MM; Nasrollahzadeh M; Javanshir S; Jamshidi A; Orooji Y; Jang HW; Shokouhimehr M Food Chem Toxicol; 2022 Oct; 168():113310. PubMed ID: 35931246 [TBL] [Abstract][Full Text] [Related]
6. Efficient recovery of palladium nanoparticles from industrial wastewater and their catalytic activity toward reduction of 4-nitrophenol. Lee SJ; Yu Y; Jung HJ; Naik SS; Yeon S; Choi MY Chemosphere; 2021 Jan; 262():128358. PubMed ID: 33182147 [TBL] [Abstract][Full Text] [Related]
7. Enhanced dechlorination of m-DCB using iron@graphite/palladium (Fe@C/Pd) nanoparticles produced by pulsed laser ablation in liquid. Yu Y; Jung HJ; Je M; Choi HC; Choi MY Chemosphere; 2016 Jul; 155():250-256. PubMed ID: 27129061 [TBL] [Abstract][Full Text] [Related]
8. In situ biogenic synthesis of Pd nanoparticles over reduced graphene oxide by using a plant extract (Thymbra spicata) and its catalytic evaluation towards cyanation of aryl halides. Veisi H; Tamoradi T; Karmakar B; Mohammadi P; Hemmati S Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109919. PubMed ID: 31499980 [TBL] [Abstract][Full Text] [Related]
9. Facile synthesis of palladium nanoparticles immobilized on magnetic biodegradable microcapsules used as effective and recyclable catalyst in Suzuki-Miyaura reaction and p-nitrophenol reduction. Baran T; Nasrollahzadeh M Carbohydr Polym; 2019 Oct; 222():115029. PubMed ID: 31320097 [TBL] [Abstract][Full Text] [Related]
10. Green synthesis of Pd/walnut shell nanocomposite using Equisetum arvense L. leaf extract and its application for the reduction of 4-nitrophenol and organic dyes in a very short time. Bordbar M; Mortazavimanesh N Environ Sci Pollut Res Int; 2017 Feb; 24(4):4093-4104. PubMed ID: 27933496 [TBL] [Abstract][Full Text] [Related]
11. Antiplasmodial activity of eco-friendly synthesized palladium nanoparticles using Eclipta prostrata extract against Plasmodium berghei in Swiss albino mice. Rajakumar G; Rahuman AA; Chung IM; Kirthi AV; Marimuthu S; Anbarasan K Parasitol Res; 2015 Apr; 114(4):1397-406. PubMed ID: 25653029 [TBL] [Abstract][Full Text] [Related]
12. Sonochemical in situ immobilization of Pd nanoparticles on green tea extract coated Fe Veisi H; Ghorbani M; Hemmati S Mater Sci Eng C Mater Biol Appl; 2019 May; 98():584-593. PubMed ID: 30813061 [TBL] [Abstract][Full Text] [Related]
13. Catalytic Activity of Bimetallic (Ruthenium/Palladium) Nano-alloy Decorated Porous Carbons Toward Reduction of Toxic Compounds. Veerakumar P; Salamalai K; Dhenadhayalan N; Lin KC Chem Asian J; 2019 Aug; 14(15):2662-2675. PubMed ID: 31149777 [TBL] [Abstract][Full Text] [Related]
14. Comparison of nickel oxide and palladium nanoparticle loaded on activated carbon for efficient removal of methylene blue: kinetic and isotherm studies of removal process. Arabzadeh S; Ghaedi M; Ansari A; Taghizadeh F; Rajabi M Hum Exp Toxicol; 2015 Feb; 34(2):153-69. PubMed ID: 24845705 [TBL] [Abstract][Full Text] [Related]
15. Growing Pd NPs on cellulose microspheres via in-situ reduction for catalytic decolorization of methylene blue. Yu Y; Liu S; Pei Y; Luo X Int J Biol Macromol; 2021 Jan; 166():1419-1428. PubMed ID: 33161082 [TBL] [Abstract][Full Text] [Related]
16. Production of palladium nanocatalyst supported on modified gum arabic and investigation of its potential against treatment of environmental contaminants. Baran T; Menteş A Int J Biol Macromol; 2020 Oct; 161():1559-1567. PubMed ID: 32791268 [TBL] [Abstract][Full Text] [Related]
17. Synthesis of biaryls using palladium nanoparticles immobilized on metformine-functionalized polystyrene resin as a reusable and efficient nanocatalyst. Veisi H; Mirshokraie SA; Ahmadian H Int J Biol Macromol; 2018 Mar; 108():419-425. PubMed ID: 29225176 [TBL] [Abstract][Full Text] [Related]
18. Green synthesis of palladium nanoparticles mediated by black tea leaves (Camellia sinensis) extract: Catalytic activity in the reduction of 4-nitrophenol and Suzuki-Miyaura coupling reaction under ligand-free conditions. Lebaschi S; Hekmati M; Veisi H J Colloid Interface Sci; 2017 Jan; 485():223-231. PubMed ID: 27665075 [TBL] [Abstract][Full Text] [Related]
19. Facile synthesis of palladium nanocatalyst using gum kondagogu (Cochlospermum gossypium): a natural biopolymer. Rastogi L; Beedu SR; Kora AJ IET Nanobiotechnol; 2015 Dec; 9(6):362-7. PubMed ID: 26647812 [TBL] [Abstract][Full Text] [Related]