These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 31927387)

  • 1. Selective recovery of heavy metals from wastewater by mechanically activated calcium carbonate: Inspiration from nature.
    Wen T; Zhao Y; Zhang T; Xiong B; Hu H; Zhang Q; Song S
    Chemosphere; 2020 May; 246():125842. PubMed ID: 31927387
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of anions species on copper removal from wastewater by using mechanically activated calcium carbonate.
    Wen T; Zhao Y; Zhang T; Xiong B; Hu H; Zhang Q; Song S
    Chemosphere; 2019 Sep; 230():127-135. PubMed ID: 31102866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-component adsorption of copper, nickel and zinc from aqueous solutions onto activated carbon prepared from date stones.
    Bouhamed F; Elouear Z; Bouzid J; Ouddane B
    Environ Sci Pollut Res Int; 2016 Aug; 23(16):15801-6. PubMed ID: 25843824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of calcium oxalate-bromopyrogallol red inclusion sorbent and application to treatment of cationic dye and heavy metal wastewaters.
    Wang HY; Gao HW
    Environ Sci Pollut Res Int; 2009 May; 16(3):339-47. PubMed ID: 18998184
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation of vaterite calcium carbonate granules from discarded oyster shells as an adsorbent for heavy metal ions removal.
    Lin PY; Wu HM; Hsieh SL; Li JS; Dong C; Chen CW; Hsieh S
    Chemosphere; 2020 Sep; 254():126903. PubMed ID: 32957296
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Turning calcium carbonate into a cost-effective wastewater-sorbing material by occluding waste dye.
    Zhao DH; Gao HW
    Environ Sci Pollut Res Int; 2010 Jan; 17(1):97-105. PubMed ID: 19263103
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heavy metals (Cd, Pb, Zn, Ni, Cu and Cr(III)) removal from water in Malaysia: post treatment by high quality limestone.
    Aziz HA; Adlan MN; Ariffin KS
    Bioresour Technol; 2008 Apr; 99(6):1578-83. PubMed ID: 17540556
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removal and recovery of heavy metals from electroplating wastewater by using Kyanite as an adsorbent.
    Ajmal M; Rao RA; Ahmad R; Ahmad J; Rao LA
    J Hazard Mater; 2001 Oct; 87(1-3):127-37. PubMed ID: 11566405
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activating CaCO
    Zeng C; Hu H; Feng X; Wang K; Zhang Q
    Chemosphere; 2020 Jun; 249():126227. PubMed ID: 32087456
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of Cu, Zn, and Cd from aqueous solutions by the dairy manure-derived biochar.
    Xu X; Cao X; Zhao L; Wang H; Yu H; Gao B
    Environ Sci Pollut Res Int; 2013 Jan; 20(1):358-68. PubMed ID: 22477163
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adsorption characteristics of copper, lead, zinc and cadmium ions by tourmaline.
    Jiang K; Sun TH; Sun LN; Li HB
    J Environ Sci (China); 2006; 18(6):1221-5. PubMed ID: 17294969
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient removal of copper from wastewater by using mechanically activated calcium carbonate.
    Hu H; Li X; Huang P; Zhang Q; Yuan W
    J Environ Manage; 2017 Dec; 203(Pt 1):1-7. PubMed ID: 28778001
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient removal of Cd(II), Cu(II), Pb(II), and Zn(II) from wastewater and natural water using submersible device.
    Smolyakov BS; Sagidullin AK; Romanov RE; Yermolaeva NI
    Environ Sci Pollut Res Int; 2019 Mar; 26(7):6368-6377. PubMed ID: 30617877
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of carbonated tricalcium silicate and its sorption capacity for heavy metals: a micron-scale composite adsorbent of active silicate gel and calcite.
    Chen Q; Hills CD; Yuan M; Liu H; Tyrer M
    J Hazard Mater; 2008 May; 153(1-2):775-83. PubMed ID: 17950999
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of metal removal by os sepiae of Sepiella maindroni Rochebrune from aqueous solutions.
    Li YZ; Pan H; Xu J; Fan XW; Song XC; Zhang Q; Xu J; Liu Y
    J Hazard Mater; 2010 Jul; 179(1-3):266-75. PubMed ID: 20347221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Removal of Residual Concentration of Hazardous Metals in Wastewater from a Neutralization Station Using Biosorbent-A Case Study Company Gutra, Czech Republic.
    Pertile E; Vaclavik V; Dvorsky T; Heviankova S
    Int J Environ Res Public Health; 2020 Oct; 17(19):. PubMed ID: 33023188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of metals from wastewaters by mineral and biomass-based sorbents applied in continuous-flow continuous stirred tank reactors followed by sedimentation.
    Heiderscheidt E; Postila H; Leiviskä T
    Sci Total Environ; 2020 Jan; 700():135079. PubMed ID: 31706088
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heavy metal retention and partitioning in a large-scale soil-aquifer treatment (SAT) system used for wastewater reclamation.
    Lin C; Shacahr Y; Banin A
    Chemosphere; 2004 Dec; 57(9):1047-58. PubMed ID: 15504463
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heavy metal speciation in solid-phase materials from a bacterial sulfate reducing bioreactor using sequential extraction procedure combined with acid volatile sulfide analysis.
    Jong T; Parry DL
    J Environ Monit; 2004 Apr; 6(4):278-85. PubMed ID: 15054535
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective copper recovery by membrane distillation and adsorption system from synthetic acid mine drainage.
    Ryu S; Naidu G; Moon H; Vigneswaran S
    Chemosphere; 2020 Dec; 260():127528. PubMed ID: 32682132
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.