BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 31927502)

  • 1. An improved algorithm of white matter hyperintensity detection in elderly adults.
    Ding T; Cohen AD; O'Connor EE; Karim HT; Crainiceanu A; Muschelli J; Lopez O; Klunk WE; Aizenstein HJ; Krafty R; Crainiceanu CM; Tudorascu DL
    Neuroimage Clin; 2020; 25():102151. PubMed ID: 31927502
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extracting and summarizing white matter hyperintensities using supervised segmentation methods in Alzheimer's disease risk and aging studies.
    Ithapu V; Singh V; Lindner C; Austin BP; Hinrichs C; Carlsson CM; Bendlin BB; Johnson SC
    Hum Brain Mapp; 2014 Aug; 35(8):4219-35. PubMed ID: 24510744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated White Matter Hyperintensity Segmentation Using Bayesian Model Selection: Assessment and Correlations with Cognitive Change.
    Fiford CM; Sudre CH; Pemberton H; Walsh P; Manning E; Malone IB; Nicholas J; Bouvy WH; Carmichael OT; Biessels GJ; Cardoso MJ; Barnes J;
    Neuroinformatics; 2020 Jun; 18(3):429-449. PubMed ID: 32062817
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tract-defined regional white matter hyperintensities and memory.
    Rizvi B; Lao PJ; Colón J; Hale C; Igwe KC; Narkhede A; Budge M; Manly JJ; Schupf N; Brickman AM
    Neuroimage Clin; 2020; 25():102143. PubMed ID: 31887716
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic segmentation of white matter hyperintensities: validation and comparison with state-of-the-art methods on both Multiple Sclerosis and elderly subjects.
    Tran P; Thoprakarn U; Gourieux E; Dos Santos CL; Cavedo E; Guizard N; Cotton F; Krolak-Salmon P; Delmaire C; Heidelberg D; Pyatigorskaya N; Ströer S; Dormont D; Martini JB; Chupin M;
    Neuroimage Clin; 2022; 33():102940. PubMed ID: 35051744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. White matter hyperintensities and their relationship to cognition: Effects of segmentation algorithm.
    Tubi MA; Feingold FW; Kothapalli D; Hare ET; King KS; Thompson PM; Braskie MN;
    Neuroimage; 2020 Feb; 206():116327. PubMed ID: 31682983
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic quantification of white matter hyperintensities on T2-weighted fluid attenuated inversion recovery magnetic resonance imaging.
    Igwe KC; Lao PJ; Vorburger RS; Banerjee A; Rivera A; Chesebro A; Laing K; Manly JJ; Brickman AM
    Magn Reson Imaging; 2022 Jan; 85():71-79. PubMed ID: 34662699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated lesion segmentation with BIANCA: Impact of population-level features, classification algorithm and locally adaptive thresholding.
    Sundaresan V; Zamboni G; Le Heron C; Rothwell PM; Husain M; Battaglini M; De Stefano N; Jenkinson M; Griffanti L
    Neuroimage; 2019 Nov; 202():116056. PubMed ID: 31376518
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance comparison of 10 different classification techniques in segmenting white matter hyperintensities in aging.
    Dadar M; Maranzano J; Misquitta K; Anor CJ; Fonov VS; Tartaglia MC; Carmichael OT; Decarli C; Collins DL;
    Neuroimage; 2017 Aug; 157():233-249. PubMed ID: 28602597
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modelling the distribution of white matter hyperintensities due to ageing on MRI images using Bayesian inference.
    Sundaresan V; Griffanti L; Kindalova P; Alfaro-Almagro F; Zamboni G; Rothwell PM; Nichols TE; Jenkinson M
    Neuroimage; 2019 Jan; 185():434-445. PubMed ID: 30359730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Manual segmentation of the fornix, fimbria, and alveus on high-resolution 3T MRI: Application via fully-automated mapping of the human memory circuit white and grey matter in healthy and pathological aging.
    Amaral RSC; Park MTM; Devenyi GA; Lynn V; Pipitone J; Winterburn J; Chavez S; Schira M; Lobaugh NJ; Voineskos AN; Pruessner JC; Chakravarty MM;
    Neuroimage; 2018 Apr; 170():132-150. PubMed ID: 27765611
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Post-acquisition processing confounds in brain volumetric quantification of white matter hyperintensities.
    Bahrani AA; Al-Janabi OM; Abner EL; Bardach SH; Kryscio RJ; Wilcock DM; Smith CD; Jicha GA
    J Neurosci Methods; 2019 Nov; 327():108391. PubMed ID: 31408649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microstructural and metabolic changes in the longitudinal progression of white matter hyperintensities.
    Jiaerken Y; Luo X; Yu X; Huang P; Xu X; Zhang M;
    J Cereb Blood Flow Metab; 2019 Aug; 39(8):1613-1622. PubMed ID: 29519198
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of a deep learning approach for the segmentation of brain tissues and white matter hyperintensities of presumed vascular origin in MRI.
    Moeskops P; de Bresser J; Kuijf HJ; Mendrik AM; Biessels GJ; Pluim JPW; Išgum I
    Neuroimage Clin; 2018; 17():251-262. PubMed ID: 29159042
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative MRI of cerebral white matter hyperintensities: A new approach towards understanding the underlying pathology.
    Iordanishvili E; Schall M; Loução R; Zimmermann M; Kotetishvili K; Shah NJ; Oros-Peusquens AM
    Neuroimage; 2019 Nov; 202():116077. PubMed ID: 31398433
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metric to quantify white matter damage on brain magnetic resonance images.
    Valdés Hernández MDC; Chappell FM; Muñoz Maniega S; Dickie DA; Royle NA; Morris Z; Anblagan D; Sakka E; Armitage PA; Bastin ME; Deary IJ; Wardlaw JM
    Neuroradiology; 2017 Oct; 59(10):951-962. PubMed ID: 28815362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. White matter hyperintensities in Alzheimer's disease: Beyond vascular contribution.
    Garnier-Crussard A; Cotton F; Krolak-Salmon P; Chételat G
    Alzheimers Dement; 2023 Aug; 19(8):3738-3748. PubMed ID: 37027506
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Explainable AI Points to White Matter Hyperintensities for Alzheimer's Disease Identification: a Preliminary Study.
    Bordin V; Coluzzi D; Rivolta MW; Baselli G
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():484-487. PubMed ID: 36086369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Limited One-time Sampling Irregularity Map (LOTS-IM) for Automatic Unsupervised Assessment of White Matter Hyperintensities and Multiple Sclerosis Lesions in Structural Brain Magnetic Resonance Images.
    Rachmadi MF; Valdés-Hernández MDC; Li H; Guerrero R; Meijboom R; Wiseman S; Waldman A; Zhang J; Rueckert D; Wardlaw J; Komura T
    Comput Med Imaging Graph; 2020 Jan; 79():101685. PubMed ID: 31846826
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of white matter disease on the accuracy of automated segmentation.
    Karim HT; Andreescu C; MacCloud RL; Butters MA; Reynolds CF; Aizenstein HJ; Tudorascu DL
    Psychiatry Res Neuroimaging; 2016 Jul; 253():7-14. PubMed ID: 27254085
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.