BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 31927608)

  • 1. Current approaches and trends in the production of microbial cellulases using residual lignocellulosic biomass: a bibliometric analysis of the last 10 years.
    Roth JCG; Hoeltz M; Benitez LB
    Arch Microbiol; 2020 Jul; 202(5):935-951. PubMed ID: 31927608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cellulolytic enzyme production and enzymatic hydrolysis for second-generation bioethanol production.
    Wang M; Li Z; Fang X; Wang L; Qu Y
    Adv Biochem Eng Biotechnol; 2012; 128():1-24. PubMed ID: 22231654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermostable cellulases: Current status and perspectives.
    Patel AK; Singhania RR; Sim SJ; Pandey A
    Bioresour Technol; 2019 May; 279():385-392. PubMed ID: 30685132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering Robust Cellulases for Tailored Lignocellulosic Degradation Cocktails.
    Contreras F; Pramanik S; Rozhkova AM; Zorov IN; Korotkova O; Sinitsyn AP; Schwaneberg U; Davari MD
    Int J Mol Sci; 2020 Feb; 21(5):. PubMed ID: 32111065
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Progress on cellulase and enzymatic hydrolysis of lignocellulosic biomass].
    Fang X; Qin Y; Li X; Wang L; Wang T; Zhu M; Qu Y
    Sheng Wu Gong Cheng Xue Bao; 2010 Jul; 26(7):864-9. PubMed ID: 20954385
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellulases: Role in Lignocellulosic Biomass Utilization.
    Soni SK; Sharma A; Soni R
    Methods Mol Biol; 2018; 1796():3-23. PubMed ID: 29856042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Designing a cellulolytic enzyme cocktail for the efficient and economical conversion of lignocellulosic biomass to biofuels.
    Adsul M; Sandhu SK; Singhania RR; Gupta R; Puri SK; Mathur A
    Enzyme Microb Technol; 2020 Feb; 133():109442. PubMed ID: 31874688
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An update on enzymatic cocktails for lignocellulose breakdown.
    Lopes AM; Ferreira Filho EX; Moreira LRS
    J Appl Microbiol; 2018 Sep; 125(3):632-645. PubMed ID: 29786939
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production and partial characterization of cellulases and Xylanases from Trichoderma atroviride 676 using lignocellulosic residual biomass.
    Grigorevski-Lima AL; de Oliveira MM; do Nascimento RP; Bon EP; Coelho RR
    Appl Biochem Biotechnol; 2013 Feb; 169(4):1373-85. PubMed ID: 23306885
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Progress and strategies on bioethanol production from lignocellulose by consolidated bioprocessing (CBP) using Saccharomyces cerevisiae].
    Xu L; Shen Y; Bao X
    Sheng Wu Gong Cheng Xue Bao; 2010 Jul; 26(7):870-9. PubMed ID: 20954386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compatible ionic liquid-cellulases system for hydrolysis of lignocellulosic biomass.
    Wang Y; Radosevich M; Hayes D; Labbé N
    Biotechnol Bioeng; 2011 May; 108(5):1042-8. PubMed ID: 21191999
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The laccase-catalyzed modification of lignin for enzymatic hydrolysis.
    Moilanen U; Kellock M; Galkin S; Viikari L
    Enzyme Microb Technol; 2011 Dec; 49(6-7):492-8. PubMed ID: 22142723
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced hydrolysis of lignocellulosic biomass: Bi-functional enzyme complexes expressed in Pichia pastoris improve bioethanol production from Miscanthus sinensis.
    Shin SK; Hyeon JE; Kim YI; Kang DH; Kim SW; Park C; Han SO
    Biotechnol J; 2015 Dec; 10(12):1912-9. PubMed ID: 26479167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioconversion of Lignocellulosic Biomass into Value Added Products under Anaerobic Conditions: Insight into Proteomic Studies.
    Vélez-Mercado MI; Talavera-Caro AG; Escobedo-Uribe KM; Sánchez-Muñoz S; Luévanos-Escareño MP; Hernández-Terán F; Alvarado A; Balagurusamy N
    Int J Mol Sci; 2021 Nov; 22(22):. PubMed ID: 34830131
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering microbial surfaces to degrade lignocellulosic biomass.
    Huang GL; Anderson TD; Clubb RT
    Bioengineered; 2014; 5(2):96-106. PubMed ID: 24430239
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cellulases for biomass degradation: comparing recombinant cellulase expression platforms.
    Garvey M; Klose H; Fischer R; Lambertz C; Commandeur U
    Trends Biotechnol; 2013 Oct; 31(10):581-93. PubMed ID: 23910542
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lignin-Enzyme Interactions in the Hydrolysis of Lignocellulosic Biomass.
    Dos Santos AC; Ximenes E; Kim Y; Ladisch MR
    Trends Biotechnol; 2019 May; 37(5):518-531. PubMed ID: 30477739
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessing cellulase performance on pretreated lignocellulosic biomass using saccharification and fermentation-based protocols.
    Dowe N
    Methods Mol Biol; 2009; 581():233-45. PubMed ID: 19768626
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrolytic potential of Trichoderma sp. strains evaluated by microplate-based screening followed by switchgrass saccharification.
    Cianchetta S; Galletti S; Burzi PL; Cerato C
    Enzyme Microb Technol; 2012 May; 50(6-7):304-10. PubMed ID: 22500897
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production and characterization of cellulases and hemicellulases by Acremonium cellulolyticus using rice straw subjected to various pretreatments as the carbon source.
    Hideno A; Inoue H; Tsukahara K; Yano S; Fang X; Endo T; Sawayama S
    Enzyme Microb Technol; 2011 Feb; 48(2):162-8. PubMed ID: 22112826
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.