These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 31927697)

  • 1. Visual deprivation is met with active changes in ground reaction forces to minimize worsening balance and stability during walking.
    Shoja O; Farsi A; Towhidkhah F; Feldman AG; Abdoli B; Bahramian A
    Exp Brain Res; 2020 Feb; 238(2):369-379. PubMed ID: 31927697
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of visual deprivation on stability among young and older adults during treadmill walking.
    Saucedo F; Yang F
    Gait Posture; 2017 May; 54():106-111. PubMed ID: 28284144
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinematic and ground reaction force accommodation during weighted walking.
    James CR; Atkins LT; Yang HS; Dufek JS; Bates BT
    Hum Mov Sci; 2015 Dec; 44():327-37. PubMed ID: 26540454
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptations of walking pattern on a compliant surface to regulate dynamic stability.
    MacLellan MJ; Patla AE
    Exp Brain Res; 2006 Aug; 173(3):521-30. PubMed ID: 16491406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Added body mass alters plantar shear stresses, postural control, and gait kinetics: Implications for obesity.
    Jeong H; Johnson AW; Feland JB; Petersen SR; Staten JM; Bruening DA
    PLoS One; 2021; 16(2):e0246605. PubMed ID: 33544773
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Leg Length Discrepancy: Dynamic Balance Response during Gait.
    Azizan NA; Basaruddin KS; Salleh AF; Sulaiman AR; Safar MJA; Rusli WMR
    J Healthc Eng; 2018; 2018():7815451. PubMed ID: 29983905
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamically adjustable foot-ground contact model to estimate ground reaction force during walking and running.
    Jung Y; Jung M; Ryu J; Yoon S; Park SK; Koo S
    Gait Posture; 2016 Mar; 45():62-8. PubMed ID: 26979885
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomechanics of Step Initiation After Balance Recovery With Implications for Humanoid Robot Locomotion.
    Miller Buffinton C; Buffinton EM; Bieryla KA; Pratt JE
    J Biomech Eng; 2016 Mar; 138(3):4032468. PubMed ID: 26769330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of vertical ground reaction forces during overground and treadmill walking.
    White SC; Yack HJ; Tucker CA; Lin HY
    Med Sci Sports Exerc; 1998 Oct; 30(10):1537-42. PubMed ID: 9789855
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of visual deprivation on gait dynamic stability.
    Iosa M; Fusco A; Morone G; Paolucci S
    ScientificWorldJournal; 2012; 2012():974560. PubMed ID: 22645490
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Whole-body angular momentum during stair ascent and descent.
    Silverman AK; Neptune RR; Sinitski EH; Wilken JM
    Gait Posture; 2014 Apr; 39(4):1109-14. PubMed ID: 24636222
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic patterns of treadmill walking in preadolescents with and without Down syndrome.
    Wu J; Ajisafe T
    Gait Posture; 2014 Jan; 39(1):241-6. PubMed ID: 23953274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of ground reaction force and marker-based methods to estimate mediolateral center of mass displacement and margins of stability during walking.
    Buurke TJW; van de Venis L; den Otter R; Nonnekes J; Keijsers N
    J Biomech; 2023 Jan; 146():111415. PubMed ID: 36542905
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of narrow base gait on mediolateral balance control in young and older adults.
    Arvin M; Mazaheri M; Hoozemans MJM; Pijnappels M; Burger BJ; Verschueren SMP; van Dieën JH
    J Biomech; 2016 May; 49(7):1264-1267. PubMed ID: 27018156
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prospective dynamic balance control during the swing phase of walking: stability boundaries and time-to-contact analysis.
    Remelius JG; Hamill J; van Emmerik RE
    Hum Mov Sci; 2014 Aug; 36():227-45. PubMed ID: 24856189
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Post-effect of forward and backward locomotion on body orientation in space during quiet stance.
    De Nunzio AM; Zanetti C; Schieppati M
    Eur J Appl Physiol; 2009 Jan; 105(2):297-307. PubMed ID: 18982347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advanced age brings a greater reliance on visual feedback to maintain balance during walking.
    Franz JR; Francis CA; Allen MS; O'Connor SM; Thelen DG
    Hum Mov Sci; 2015 Apr; 40():381-92. PubMed ID: 25687664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direction-dependent control of balance during walking and standing.
    O'Connor SM; Kuo AD
    J Neurophysiol; 2009 Sep; 102(3):1411-9. PubMed ID: 19553493
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic gait stability of treadmill versus overground walking in young adults.
    Yang F; King GA
    J Electromyogr Kinesiol; 2016 Dec; 31():81-87. PubMed ID: 27694060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of the ground reaction forces from a single video camera based on the spring-like center of mass dynamics of human walking.
    Jeong H; Park S
    J Biomech; 2020 Dec; 113():110074. PubMed ID: 33176224
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.