These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 31927979)

  • 41. Oil-Repellent Antifogging Films with Water-Enabled Functional and Structural Healing Ability.
    Xu F; Li X; Li Y; Sun J
    ACS Appl Mater Interfaces; 2017 Aug; 9(33):27955-27963. PubMed ID: 28752755
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Development of "Liquid-like" Copolymer Nanocoatings for Reactive Oil-Repellent Surface.
    Liu P; Zhang H; He W; Li H; Jiang J; Liu M; Sun H; He M; Cui J; Jiang L; Yao X
    ACS Nano; 2017 Feb; 11(2):2248-2256. PubMed ID: 28192661
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Surface chemical modification of poly(dimethylsiloxane)-based biomimetic materials: oil-repellent surfaces.
    Ghosh N; Bajoria A; Vaidya AA
    ACS Appl Mater Interfaces; 2009 Nov; 1(11):2636-44. PubMed ID: 20356137
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Wettability-controllable super water- and moderately oil-repellent surface fabricated by wet chemical etching.
    Kim TI; Tahk D; Lee HH
    Langmuir; 2009 Jun; 25(11):6576-9. PubMed ID: 19402686
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Direct generation of silica nanowire-based thin film on various substrates with tunable surface nanostructure and extreme repellency toward complex liquids.
    Yuan JJ; Jin RH
    Langmuir; 2011 Aug; 27(15):9588-96. PubMed ID: 21692517
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Superhydrophobic and superoleophilic nanoparticle film: synthesis and reversible wettability switching behavior.
    Zhang X; Guo Y; Zhang P; Wu Z; Zhang Z
    ACS Appl Mater Interfaces; 2012 Mar; 4(3):1742-6. PubMed ID: 22329929
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Nacre-inspired design of mechanical stable coating with underwater superoleophobicity.
    Xu LP; Peng J; Liu Y; Wen Y; Zhang X; Jiang L; Wang S
    ACS Nano; 2013 Jun; 7(6):5077-83. PubMed ID: 23701041
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Self-Healing Label Materials Based on Photo-Cross-Linkable Polymeric Films with Dynamic Surface Structures.
    Chen XC; Huang WP; Ren KF; Ji J
    ACS Nano; 2018 Aug; 12(8):8686-8696. PubMed ID: 30106556
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Super-hydrophobic multilayer coatings with layer number tuned swapping in surface wettability and redox catalytic anti-corrosion application.
    Syed JA; Tang S; Meng X
    Sci Rep; 2017 Jun; 7(1):4403. PubMed ID: 28667277
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Biomimetic Bubble-Repellent Tubes: Microdimple Arrays Enhance Repellency of Bubbles Inside of Tubes.
    Kamei J; Abe H; Yabu H
    Langmuir; 2017 Jan; 33(2):585-590. PubMed ID: 28029265
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Interfacing superhydrophobic silica nanoparticle films with graphene and thermoplastic polyurethane for wear/abrasion resistance.
    Naderizadeh S; Athanassiou A; Bayer IS
    J Colloid Interface Sci; 2018 Jun; 519():285-295. PubMed ID: 29505990
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Plasma treatment as an efficient tool for controlled drug release from polymeric materials: A review.
    Petlin DG; Tverdokhlebov SI; Anissimov YG
    J Control Release; 2017 Nov; 266():57-74. PubMed ID: 28935595
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cotton fabrics with single-faced superhydrophobicity.
    Liu Y; Xin JH; Choi CH
    Langmuir; 2012 Dec; 28(50):17426-34. PubMed ID: 23186211
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Controlled wettability based on reversible micro-cracking on a shape memory polymer surface.
    Han Y; Liu Y; Wang W; Leng J; Jin P
    Soft Matter; 2016 Mar; 12(10):2708-14. PubMed ID: 26865175
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Novel Fluorinated Polymers Containing Short Perfluorobutyl Side Chains and Their Super Wetting Performance on Diverse Substrates.
    Jiang J; Zhang G; Wang Q; Zhang Q; Zhan X; Chen F
    ACS Appl Mater Interfaces; 2016 Apr; 8(16):10513-23. PubMed ID: 27052113
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Designing robust underwater superoleophobic microstructures on copper substrates.
    Li C; Lai H; Cheng Z; Yan J; An M
    Nanoscale; 2018 Nov; 10(43):20435-20442. PubMed ID: 30379173
    [TBL] [Abstract][Full Text] [Related]  

  • 57.
    Sun Q; Lin S; Wang D; Li Y; Yang J; Deng X
    iScience; 2021 Mar; 24(3):102208. PubMed ID: 33748702
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Biomimetic super-lyophobic and super-lyophilic materials applied for oil/water separation: a new strategy beyond nature.
    Wang B; Liang W; Guo Z; Liu W
    Chem Soc Rev; 2015 Jan; 44(1):336-61. PubMed ID: 25311259
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Deposition of chemically reactive and repellent sites on biosensor chips for reduced non-specific binding.
    Gandhiraman RP; Gubala V; Le NC; Volcke C; Doyle C; James B; Daniels S; Williams DE
    Colloids Surf B Biointerfaces; 2010 Aug; 79(1):270-5. PubMed ID: 20452191
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Biomimetic ultra-bubble-repellent surfaces based on a self-organized honeycomb film.
    Kamei J; Saito Y; Yabu H
    Langmuir; 2014 Dec; 30(47):14118-22. PubMed ID: 25401223
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.