These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 31927981)

  • 21. Biocompatible off-stoichiometric copper indium sulfide quantum dots with tunable near-infrared emission via aqueous based synthesis.
    Jiao M; Huang X; Ma L; Li Y; Zhang P; Wei X; Jing L; Luo X; Rogach AL; Gao M
    Chem Commun (Camb); 2019 Dec; 55(100):15053-15056. PubMed ID: 31777878
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Unique Luminescence of Hexagonal Dominant Colloidal Copper Indium Sulphide Quantum Dots in Dispersed Solutions.
    Shin SJ; Koo JJ; Lee JK; Chung TD
    Sci Rep; 2019 Dec; 9(1):20144. PubMed ID: 31882977
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Size-Dependent Band-Gap and Molar Absorption Coefficients of Colloidal CuInS
    Xia C; Wu W; Yu T; Xie X; van Oversteeg C; Gerritsen HC; de Mello Donega C
    ACS Nano; 2018 Aug; 12(8):8350-8361. PubMed ID: 30085648
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bandgap- and Radial-Position-Dependent Mn-Doped Zn-Cu-In-S/ZnS Core/Shell Nanocrystals.
    Peng L; Huang K; Zhang Z; Zhang Y; Shi Z; Xie R; Yang W
    Chemphyschem; 2016 Mar; 17(5):752-8. PubMed ID: 26419419
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Two Distinct Transitions in Cu(x)InS2 Quantum Dots. Bandgap versus Sub-Bandgap Excitations in Copper-Deficient Structures.
    Jara DH; Stamplecoskie KG; Kamat PV
    J Phys Chem Lett; 2016 Apr; 7(8):1452-9. PubMed ID: 27043435
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synthesis of CuInS2 quantum dots using polyetheramine as solvent.
    Shei SC; Chiang WJ; Chang SJ
    Nanoscale Res Lett; 2015; 10():122. PubMed ID: 25852415
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of Copper Doping on Electronic Structure and Optical Absorption of Cd
    Zhao F; Hu S; Xu C; Xiao H; Zhou X; Zu X; Peng S
    Nanomaterials (Basel); 2021 Sep; 11(10):. PubMed ID: 34684972
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Unraveling the Emission Pathways in Copper Indium Sulfide Quantum Dots.
    Xia C; Tamarat P; Hou L; Busatto S; Meeldijk JD; de Mello Donega C; Lounis B
    ACS Nano; 2021 Nov; 15(11):17573-17581. PubMed ID: 34546035
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Harnessing the properties of colloidal quantum dots in luminescent solar concentrators.
    Zhou Y; Zhao H; Ma D; Rosei F
    Chem Soc Rev; 2018 Jul; 47(15):5866-5890. PubMed ID: 29915833
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Highly Luminescent, Size- and Shape-Tunable Copper Indium Selenide Based Colloidal Nanocrystals.
    Yarema O; Bozyigit D; Rousseau I; Nowack L; Yarema M; Heiss W; Wood V
    Chem Mater; 2013 Sep; 25(18):3753-3757. PubMed ID: 24748721
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Red Emission from Copper-Vacancy Color Centers in Zinc Sulfide Colloidal Nanocrystals.
    Thompson SM; Şahin C; Yang S; Flatté ME; Murray CB; Bassett LC; Kagan CR
    ACS Nano; 2023 Mar; 17(6):5963-5973. PubMed ID: 36892080
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synthesis of ZnSe and ZnSe:Cu quantum dots by a room temperature photochemical (UV-assisted) approach using Na
    Khafajeh R; Molaei M; Karimipour M
    Luminescence; 2017 Jun; 32(4):581-587. PubMed ID: 27699995
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Stokes-Shift-Engineered Indium Phosphide Quantum Dots for Efficient Luminescent Solar Concentrators.
    Sadeghi S; Bahmani Jalali H; Melikov R; Ganesh Kumar B; Mohammadi Aria M; Ow-Yang CW; Nizamoglu S
    ACS Appl Mater Interfaces; 2018 Apr; 10(15):12975-12982. PubMed ID: 29589740
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of precursor ratio and dopant concentration on the structure and optical properties of Cu-doped ZnCdSe-alloyed quantum dots.
    Ca NX; Van HT; Do PV; Thanh LD; Tan PM; Truong NX; Oanh VTK; Binh NT; Hien NT
    RSC Adv; 2020 Jul; 10(43):25618-25628. PubMed ID: 35518601
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Surface ligand chemistry on quaternary Ag(In
    Hoisang W; Uematsu T; Torimoto T; Kuwabata S
    Nanoscale Adv; 2022 Feb; 4(3):849-857. PubMed ID: 36131838
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optical Properties, Synthesis, and Potential Applications of Cu-Based Ternary or Quaternary Anisotropic Quantum Dots, Polytypic Nanocrystals, and Core/Shell Heterostructures.
    Bai X; Purcell-Milton F; Gun'ko YK
    Nanomaterials (Basel); 2019 Jan; 9(1):. PubMed ID: 30634642
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Aqueous synthesis of composition-tuned defects in CuInSe
    Qu S; Yuan X; Li Y; Li X; Zhou X; Xue X; Zhang K; Xu J; Yuan C
    Nanoscale Adv; 2021 Apr; 3(8):2334-2342. PubMed ID: 36133756
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electrostatically Driven Resonance Energy Transfer in an All-Quantum Dot Based Donor-Acceptor System.
    Roy P; Devatha G; Roy S; Rao A; Pillai PP
    J Phys Chem Lett; 2020 Jul; 11(13):5354-5360. PubMed ID: 32539403
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Room-Temperature Ionic-Liquid-Assisted Microwave Preparation of Tunable Photoluminescent Copper-Indium-Zinc-Sulfide Quantum Dots.
    Chen T; Xu Y; Wang L; Jiang W; Jiang W; Xie Z
    Chemistry; 2018 Nov; 24(61):16407-16417. PubMed ID: 30136426
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of Cu-In-Ga-S quantum dots with a narrow emission peak for red electroluminescence.
    Jiang C; Tozawa M; Akiyoshi K; Kameyama T; Yamamoto T; Motomura G; Fujisaki Y; Uematsu T; Kuwabata S; Torimoto T
    J Chem Phys; 2023 Apr; 158(16):. PubMed ID: 37096856
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.