These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 31928)

  • 1. Effects of hemolysate concentration, ionic strength and cytochrome b5 concentration on the rate of methemoglobin reduction in hemolysates of human erythrocytes.
    Sannes LJ; Hultquist DE
    Biochim Biophys Acta; 1978 Dec; 544(3):547-54. PubMed ID: 31928
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Properties of methemoglobin reductase and kinetic study of methemoglobin reduction.
    Kuma F
    J Biol Chem; 1981 Jun; 256(11):5518-23. PubMed ID: 7240153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catalysis of methemoglobin reduction.
    Hultquist DE; Sannes LJ; Juckett DA
    Curr Top Cell Regul; 1984; 24():287-300. PubMed ID: 6499522
    [No Abstract]   [Full Text] [Related]  

  • 4. The NADH/NADPH-methemoglobin reduction system or erythrocytes.
    Hultquist DE; Sannes LJ; Schafer DA
    Prog Clin Biol Res; 1981; 55():291-309. PubMed ID: 7027268
    [No Abstract]   [Full Text] [Related]  

  • 5. Reduction of methemoglobin through flavin at the physiological concentration by NADPH-flavin reductase of human erythrocytes.
    Yubisui T; Takeshita M; Yoneyama Y
    J Biochem; 1980 Jun; 87(6):1715-20. PubMed ID: 7400118
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Steady-state dependence of the methemoglobin reduction rate on its concentration in intact human erythrocytes].
    Ataullakhanov FI; Vitvitskiĭ VM; Zhabotinskiĭ AM; Kiiatkin AB; Pichugin AV
    Biokhimiia; 1984 Feb; 49(2):193-7. PubMed ID: 6424728
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of NADPH and the NADPH-dependent methemoglobin reductase in the hydroxylase activity of human erythrocytes.
    Blisard KS; Mieyal JJ
    Arch Biochem Biophys; 1981 Sep; 210(2):762-9. PubMed ID: 6795993
    [No Abstract]   [Full Text] [Related]  

  • 8. [Methemoglobin-reductase activity in hemolysates of normal and methemoglobinemic erythrocytes].
    MISSALE G; COCCONI G; DELINDATI F; PISANO F
    Rass Fisiopatol Clin Ter; 1961 Mar; 33():197-209. PubMed ID: 14474578
    [No Abstract]   [Full Text] [Related]  

  • 9. Studies on methemoglobin reductase. Immunochemical similarity of soluble methemoglobin reductase and cytochrome b5 of human erythrocytes with NADH-cytochrome b5 reductase and cytochrome b5 of rat liver microsomes.
    Kuma F; Prough RA; Masters BS
    Arch Biochem Biophys; 1976 Feb; 172(2):600-7. PubMed ID: 1259422
    [No Abstract]   [Full Text] [Related]  

  • 10. Impaired erythrocyte methemoglobin reduction in sickle cell disease: dependence of methemoglobin reduction on reduced nicotinamide adenine dinucleotide content.
    Zerez CR; Lachant NA; Tanaka KR
    Blood; 1990 Sep; 76(5):1008-14. PubMed ID: 2393709
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Membrane-bound cytochrome b5 reductase (methemoglobin reductase) in human erythrocytes. Study in normal and methemoglobinemic subjects.
    Choury D; Leroux A; Kaplan JC
    J Clin Invest; 1981 Jan; 67(1):149-55. PubMed ID: 7451647
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [A method of determining NADH-methemoglobin reductase activity using amino derivatives of o-benzoquinone].
    Lunets EF; Speranskaia ECh; Speranskiĭ SD
    Vopr Med Khim; 1987; 33(3):126-8. PubMed ID: 3630008
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relationship between the pentose phosphate shunt and methemoglobin reductase activity in human erythrocytes: Effect of aging on methemoglobin reductase activity.
    Ioppolo C; Currell DL; Civalleri L; Antonini E
    Experientia; 1979 Aug; 35(8):1112-3. PubMed ID: 38988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Concentration of NADH-cytochrome b5 reductase in erythrocytes of normal and methemoglobinemic individuals measured with a quantitative radioimmunoblotting assay.
    Borgese N; Pietrini G; Gaetani S
    J Clin Invest; 1987 Nov; 80(5):1296-302. PubMed ID: 3680497
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic studies on methemoglobin reduction by human red cell NADH cytochrome b5 reductase.
    Tomoda A; Yubisui T; Tsuji A; Yoneyama Y
    J Biol Chem; 1979 Apr; 254(8):3119-23. PubMed ID: 429336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hexose monophosphate shunt-stimulated reduction of methemoglobin by divicine.
    Benatti U; Guida L; Grasso M; Tonetti M; De Flora A; Winterbourn CC
    Arch Biochem Biophys; 1985 Nov; 242(2):549-56. PubMed ID: 4062295
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of repetitive bleeding on NADH-cytochrome b5 methemoglobin reductase activity and molybdenum content in erythrocytes in rats.
    Yang Y; Wang F; Li GS; Kang DR
    Biomed Environ Sci; 1996 Dec; 9(4):393-8. PubMed ID: 8988808
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Method of determination of the activity of NAD-N2-dependent methemoglobin reductase in the erythrocytes].
    Derviz GV
    Lab Delo; 1976; (4):220-4. PubMed ID: 66375
    [No Abstract]   [Full Text] [Related]  

  • 19. Congenital methemoglobinemia with a deficiency of cytochrome b5.
    Hegesh E; Hegesh J; Kaftory A
    N Engl J Med; 1986 Mar; 314(12):757-61. PubMed ID: 3951505
    [No Abstract]   [Full Text] [Related]  

  • 20. Methemoglobin reductase variability as related to NAD glycohydrolase activity.
    Scarrà GL; Ghio R; Ajmar F; Bruzzone G; Salvidio E
    Arch Biochem Biophys; 1974 Oct; 164(2):286-91. PubMed ID: 4156631
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 12.