These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 31928185)
41. Increased homeothermy during reproduction in a basal placental mammal. Levesque DL; Lovegrove BG J Exp Biol; 2014 May; 217(Pt 9):1535-42. PubMed ID: 24501138 [TBL] [Abstract][Full Text] [Related]
42. The evolution of endothermy is explained by thyroid hormone-mediated responses to cold in early vertebrates. Little AG; Seebacher F J Exp Biol; 2014 May; 217(Pt 10):1642-8. PubMed ID: 24829322 [TBL] [Abstract][Full Text] [Related]
43. Revisiting the evolutionary trend toward the mammalian lower jaw in non-mammalian synapsids in a phylogenetic context. Harano T; Asahara M PeerJ; 2023; 11():e15575. PubMed ID: 37361048 [TBL] [Abstract][Full Text] [Related]
44. Large-scale evolution of body temperatures in land vertebrates. Moreira MO; Qu YF; Wiens JJ Evol Lett; 2021 Oct; 5(5):484-494. PubMed ID: 34621535 [TBL] [Abstract][Full Text] [Related]
45. Inferring the physiological regimes of extinct vertebrates: methods, limits and framework. Padian K; de Ricqlès A Philos Trans R Soc Lond B Biol Sci; 2020 Mar; 375(1793):20190147. PubMed ID: 31928190 [TBL] [Abstract][Full Text] [Related]
46. Transition from ectothermy to endothermy: the development of metabolic capacity in a bird (Gallus gallus). Seebacher F; Schwartz TS; Thompson MB Proc Biol Sci; 2006 Mar; 273(1586):565-70. PubMed ID: 16537127 [TBL] [Abstract][Full Text] [Related]
47. A meta-analysis of in vivo vertebrate cardiac performance: implications for cardiovascular support in the evolution of endothermy. Hillman SS; Hedrick MS J Exp Biol; 2015 Apr; 218(Pt 8):1143-50. PubMed ID: 25911732 [TBL] [Abstract][Full Text] [Related]
48. Endothermy and activity in vertebrates. Bennett AF; Ruben JA Science; 1979 Nov; 206(4419):649-54. PubMed ID: 493968 [TBL] [Abstract][Full Text] [Related]
49. Palaeophysiology of pH regulation in tetrapods. Janis CM; Napoli JG; Warren DE Philos Trans R Soc Lond B Biol Sci; 2020 Mar; 375(1793):20190131. PubMed ID: 31928199 [TBL] [Abstract][Full Text] [Related]
50. Ectothermy and endothermy: evolutionary perspectives of thermoprotection by HSPs. Shabtay A; Arad Z J Exp Biol; 2005 Jul; 208(Pt 14):2773-81. PubMed ID: 16000546 [TBL] [Abstract][Full Text] [Related]
51. Resting Metabolic Rate Is Positively Correlated with Parental Care Behavior in a Dwarf Hamster. Clavijo-Baquet S; Cumplido N; Bozinovic F J Exp Zool A Ecol Genet Physiol; 2016 Apr; 325(4):274-82. PubMed ID: 27121541 [TBL] [Abstract][Full Text] [Related]
52. The role of the red blood cell and platelet in the evolution of mammalian and avian endothermy. Soslau G J Exp Zool B Mol Dev Evol; 2020 Mar; 334(2):113-127. PubMed ID: 31799805 [TBL] [Abstract][Full Text] [Related]
53. Endothermy of dynastine scarab beetles (Cyclocephala colasi) associated with pollination biology of a thermogenic arum lily (Philodendron solimoesense). Seymour RS; White CR; Gibernau M J Exp Biol; 2009 Sep; 212(18):2960-8. PubMed ID: 19717678 [TBL] [Abstract][Full Text] [Related]
54. Diverse aging rates in ectothermic tetrapods provide insights for the evolution of aging and longevity. Reinke BA; Cayuela H; Janzen FJ; Lemaître JF; Gaillard JM; Lawing AM; Iverson JB; Christiansen DG; Martínez-Solano I; Sánchez-Montes G; Gutiérrez-Rodríguez J; Rose FL; Nelson N; Keall S; Crivelli AJ; Nazirides T; Grimm-Seyfarth A; Henle K; Mori E; Guiller G; Homan R; Olivier A; Muths E; Hossack BR; Bonnet X; Pilliod DS; Lettink M; Whitaker T; Schmidt BR; Gardner MG; Cheylan M; Poitevin F; Golubović A; Tomović L; Arsovski D; Griffiths RA; Arntzen JW; Baron JP; Le Galliard JF; Tully T; Luiselli L; Capula M; Rugiero L; McCaffery R; Eby LA; Briggs-Gonzalez V; Mazzotti F; Pearson D; Lambert BA; Green DM; Jreidini N; Angelini C; Pyke G; Thirion JM; Joly P; Léna JP; Tucker AD; Limpus C; Priol P; Besnard A; Bernard P; Stanford K; King R; Garwood J; Bosch J; Souza FL; Bertoluci J; Famelli S; Grossenbacher K; Lenzi O; Matthews K; Boitaud S; Olson DH; Jessop TS; Gillespie GR; Clobert J; Richard M; Valenzuela-Sánchez A; Fellers GM; Kleeman PM; Halstead BJ; Grant EHC; Byrne PG; Frétey T; Le Garff B; Levionnois P; Maerz JC; Pichenot J; Olgun K; Üzüm N; Avcı A; Miaud C; Elmberg J; Brown GP; Shine R; Bendik NF; O'Donnell L; Davis CL; Lannoo MJ; Stiles RM; Cox RM; Reedy AM; Warner DA; Bonnaire E; Grayson K; Ramos-Targarona R; Baskale E; Muñoz D; Measey J; de Villiers FA; Selman W; Ronget V; Bronikowski AM; Miller DAW Science; 2022 Jun; 376(6600):1459-1466. PubMed ID: 35737773 [TBL] [Abstract][Full Text] [Related]
55. The phylogeny of a species-level tendency: species heritability and possible deep origins of Bergmann's rule in tetrapods. De Queiroz A; Ashton KG Evolution; 2004 Aug; 58(8):1674-84. PubMed ID: 15446422 [TBL] [Abstract][Full Text] [Related]
56. A broad-scale comparison of aerobic activity levels in vertebrates: endotherms versus ectotherms. Gillooly JF; Gomez JP; Mavrodiev EV Proc Biol Sci; 2017 Feb; 284(1849):. PubMed ID: 28202808 [TBL] [Abstract][Full Text] [Related]
57. On the origins of endothermy in amniotes. Faure-Brac MG; Woodward HN; Aubier P; Cubo J iScience; 2024 Apr; 27(4):109375. PubMed ID: 38544566 [TBL] [Abstract][Full Text] [Related]
58. Evolution and consequences of endothermy in fishes. Dickson KA; Graham JB Physiol Biochem Zool; 2004; 77(6):998-1018. PubMed ID: 15674772 [TBL] [Abstract][Full Text] [Related]