These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 31928335)

  • 41. Review on magnetic adsorbents for removal of elemental mercury from coal combustion flue gas.
    Zhang L; Zheng Y; Li G; Gao J; Li R; Yue T
    Environ Res; 2024 Feb; 243():117734. PubMed ID: 38029827
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The thief process for mercury removal from flue gas.
    Granite EJ; Freeman MC; Hargis RA; O'Dowd WJ; Pennline HW
    J Environ Manage; 2007 Sep; 84(4):628-34. PubMed ID: 16959396
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Development of cost-effective noncarbon sorbents for Hg(0) removal from coal-fired power plants.
    Lee JY; Ju Y; Keener TC; Varma RS
    Environ Sci Technol; 2006 Apr; 40(8):2714-20. PubMed ID: 16683613
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Different Crystal Forms of ZnS Nanomaterials for the Adsorption of Elemental Mercury.
    Yang Y; Huang R; Xu W; Zhang J; Li C; Song J; Zhu T
    Environ Sci Technol; 2021 May; 55(10):6965-6974. PubMed ID: 33554595
    [TBL] [Abstract][Full Text] [Related]  

  • 45. As, Hg, and Se flue gas sampling in a coal-fired power plant and their fate during coal combustion.
    Otero-Rey JR; López-Vilariño JM; Moreda-Piñeiro J; Alonso-Rodríguez E; Muniategui-Lorenzo S; López-Mahía P; Prada-Rodríguez D
    Environ Sci Technol; 2003 Nov; 37(22):5262-7. PubMed ID: 14655716
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The fate and behavior of mercury in coal-fired power plants.
    Meij R; Vredenbregt LH; te Winkel H
    J Air Waste Manag Assoc; 2002 Aug; 52(8):912-7. PubMed ID: 12184689
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effect of impregnation sequence of Pd/Ce/γ-Al
    Huo Q; Yue C; Wang Y; Han L; Wang J; Chen S; Bao W; Chang L; Xie K
    Chemosphere; 2020 Jun; 249():126164. PubMed ID: 32065997
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Stepwise Ions Incorporation Method for Continuously Activating PbS to Recover Mercury from Hg
    Hong Q; Liao Y; Xu H; Huang W; Qu Z; Yan N
    Environ Sci Technol; 2020 Sep; 54(18):11594-11601. PubMed ID: 32835473
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Concurrent removal of elemental mercury and SO
    Balasundaram K; Sharma M
    Environ Sci Pollut Res Int; 2018 Jun; 25(16):15518-15528. PubMed ID: 29569202
    [TBL] [Abstract][Full Text] [Related]  

  • 50. An electrochemical system for removing and recovering elemental mercury from a gas stream.
    Bolger PT; Szlag DC
    Environ Sci Technol; 2002 Oct; 36(20):4430-5. PubMed ID: 12387419
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Economics of an integrated approach to control SO2, NOX, HCl, and particulate emissions from power plants.
    Shemwell BE; Ergut A; Levendis YA
    J Air Waste Manag Assoc; 2002 May; 52(5):521-34. PubMed ID: 12022692
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Spherical-shaped CuS modified carbon nitride nanosheet for efficient capture of elemental mercury from flue gas at low temperature.
    Wang F; Wang R; Jia T; Wu J; Xu C; Sun Y; Wang X; Wu W; Qi Y
    J Hazard Mater; 2021 Aug; 415():125692. PubMed ID: 34088187
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mercury removal from flue gases by novel regenerable magnetic nanocomposite sorbents.
    Dong J; Xu Z; Kuznicki SM
    Environ Sci Technol; 2009 May; 43(9):3266-71. PubMed ID: 19534145
    [TBL] [Abstract][Full Text] [Related]  

  • 54. One Step Interface Activation of ZnS Using Cupric Ions for Mercury Recovery from Nonferrous Smelting Flue Gas.
    Liao Y; Xu H; Liu W; Ni H; Zhang X; Zhai A; Quan Z; Qu Z; Yan N
    Environ Sci Technol; 2019 Apr; 53(8):4511-4518. PubMed ID: 30855949
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Oxidation and stabilization of elemental mercury from coal-fired flue gas by sulfur monobromide.
    Qu Z; Yan N; Liu P; Guo Y; Jia J
    Environ Sci Technol; 2010 May; 44(10):3889-94. PubMed ID: 20408537
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Integrated removal of NO and mercury from coal combustion flue gas using manganese oxides supported on TiO
    Zhang S; Zhao Y; Wang Z; Zhang J; Wang L; Zheng C
    J Environ Sci (China); 2017 Mar; 53():141-150. PubMed ID: 28372738
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Outstanding Performance of Recyclable Amorphous MoS
    Mei J; Wang C; Kong L; Liu X; Hu Q; Zhao H; Yang S
    Environ Sci Technol; 2019 Apr; 53(8):4480-4489. PubMed ID: 30900878
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Enhanced elemental mercury removal in coal-fired flue gas by modified algal waste-derived biochar: Performance and mechanism.
    Cao Q; Wang C; Tang D; Zhang X; Wu P; Zhang Y; Liu H; Zheng Z
    J Environ Manage; 2023 Jan; 325(Pt B):116427. PubMed ID: 36274339
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Role of flue gas components in mercury oxidation over TiO2 supported MnOx-CeO2 mixed-oxide at low temperature.
    Li H; Wu CY; Li Y; Li L; Zhao Y; Zhang J
    J Hazard Mater; 2012 Dec; 243():117-23. PubMed ID: 23131500
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Significant Enhancement of Gaseous Elemental Mercury Recovery from Coal-Fired Flue Gas by Phosphomolybdic Acid Grafting on Sulfurated γ-Fe
    Mei J; Sun P; Wang C; Zhang Q; Hu Q; Yang S
    Environ Sci Technol; 2020 Feb; 54(3):1992-2001. PubMed ID: 31894980
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.