These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 31928686)
1. Setaria viridis as a model for translational genetic studies of jasmonic acid-related insect defenses in Zea mays. Hunter CT; Block AK; Christensen SA; Li QB; Rering C; Alborn HT Plant Sci; 2020 Feb; 291():110329. PubMed ID: 31928686 [TBL] [Abstract][Full Text] [Related]
2. The maize lipoxygenase, ZmLOX10, mediates green leaf volatile, jasmonate and herbivore-induced plant volatile production for defense against insect attack. Christensen SA; Nemchenko A; Borrego E; Murray I; Sobhy IS; Bosak L; DeBlasio S; Erb M; Robert CA; Vaughn KA; Herrfurth C; Tumlinson J; Feussner I; Jackson D; Turlings TC; Engelberth J; Nansen C; Meeley R; Kolomiets MV Plant J; 2013 Apr; 74(1):59-73. PubMed ID: 23279660 [TBL] [Abstract][Full Text] [Related]
3. ZmMYC2s play important roles in maize responses to simulated herbivory and jasmonate. Ma C; Li R; Sun Y; Zhang M; Li S; Xu Y; Song J; Li J; Qi J; Wang L; Wu J J Integr Plant Biol; 2023 Apr; 65(4):1041-1058. PubMed ID: 36349965 [TBL] [Abstract][Full Text] [Related]
4. 9,10-KODA, an α-ketol produced by the tonoplast-localized 9-lipoxygenase ZmLOX5, plays a signaling role in maize defense against insect herbivory. Yuan P; Borrego E; Park YS; Gorman Z; Huang PC; Tolley J; Christensen SA; Blanford J; Kilaru A; Meeley R; Koiwa H; Vidal S; Huffaker A; Schmelz E; Kolomiets MV Mol Plant; 2023 Aug; 16(8):1283-1303. PubMed ID: 37434355 [TBL] [Abstract][Full Text] [Related]
5. Relative contribution of LOX10, green leaf volatiles and JA to wound-induced local and systemic oxylipin and hormone signature in Zea mays (maize). He Y; Borrego EJ; Gorman Z; Huang PC; Kolomiets MV Phytochemistry; 2020 Jun; 174():112334. PubMed ID: 32172019 [TBL] [Abstract][Full Text] [Related]
6. Plants on constant alert: elevated levels of jasmonic acid and jasmonate-induced transcripts in caterpillar-resistant maize. Shivaji R; Camas A; Ankala A; Engelberth J; Tumlinson JH; Williams WP; Wilkinson JR; Luthe DS J Chem Ecol; 2010 Feb; 36(2):179-91. PubMed ID: 20148356 [TBL] [Abstract][Full Text] [Related]
7. Defense priming by non-jasmonate producing fatty acids in maize (Zea mays). Li T; Cofer TM; Engelberth MJ; Engelberth J Plant Signal Behav; 2016 Nov; 11(11):e1243635. PubMed ID: 27763804 [TBL] [Abstract][Full Text] [Related]
8. Transcriptional analysis of distant signaling induced by insect elicitors and mechanical wounding in Zea mays. Engelberth J; Contreras CF; Viswanathan S PLoS One; 2012; 7(4):e34855. PubMed ID: 22511969 [TBL] [Abstract][Full Text] [Related]
10. Systemic defense priming by Pseudomonas putida KT2440 in maize depends on benzoxazinoid exudation from the roots. Neal AL; Ton J Plant Signal Behav; 2013 Jan; 8(1):e22655. PubMed ID: 23221758 [TBL] [Abstract][Full Text] [Related]
11. Trade-offs between the accumulation of cuticular wax and jasmonic acid-mediated herbivory resistance in maize. Liu J; Li L; Xiong Z; Robert CAM; Li B; He S; Chen W; Bi J; Zhai G; Guo S; Zhang H; Li J; Zhou S; Zhang X; Song CP J Integr Plant Biol; 2024 Jan; 66(1):143-159. PubMed ID: 37975264 [TBL] [Abstract][Full Text] [Related]
12. Integration of two herbivore-induced plant volatiles results in synergistic effects on plant defence and resistance. Hu L; Ye M; Erb M Plant Cell Environ; 2019 Mar; 42(3):959-971. PubMed ID: 30195252 [TBL] [Abstract][Full Text] [Related]
13. Rapidly induced chemical defenses in maize stems and their effects on short-term growth of Ostrinia nubilalis. Dafoe NJ; Huffaker A; Vaughan MM; Duehl AJ; Teal PE; Schmelz EA J Chem Ecol; 2011 Sep; 37(9):984-91. PubMed ID: 21833765 [TBL] [Abstract][Full Text] [Related]
14. Protein profiling and tps23 induction in different maize lines in response to methyl jasmonate treatment and Diabrotica virgifera infestation. Capra E; Colombi C; De Poli P; Nocito FF; Cocucci M; Vecchietti A; Marocco A; Stile MR; Rossini L J Plant Physiol; 2015 Mar; 175():68-77. PubMed ID: 25506768 [TBL] [Abstract][Full Text] [Related]
15. Plant elicitor peptides are conserved signals regulating direct and indirect antiherbivore defense. Huffaker A; Pearce G; Veyrat N; Erb M; Turlings TC; Sartor R; Shen Z; Briggs SP; Vaughan MM; Alborn HT; Teal PE; Schmelz EA Proc Natl Acad Sci U S A; 2013 Apr; 110(14):5707-12. PubMed ID: 23509266 [TBL] [Abstract][Full Text] [Related]
16. Localization of sesquiterpene formation and emission in maize leaves after herbivore damage. Köllner TG; Lenk C; Schnee C; Köpke S; Lindemann P; Gershenzon J; Degenhardt J BMC Plant Biol; 2013 Jan; 13():15. PubMed ID: 23363415 [TBL] [Abstract][Full Text] [Related]
17. Foliar herbivory triggers local and long distance defense responses in maize. Ankala A; Kelley RY; Rowe DE; Williams WP; Luthe DS Plant Sci; 2013 Feb; 199-200():103-12. PubMed ID: 23265323 [TBL] [Abstract][Full Text] [Related]
18. The solute specificity profiles of nucleobase cation symporter 1 (NCS1) from Zea mays and Setaria viridis illustrate functional flexibility. Rapp M; Schein J; Hunt KA; Nalam V; Mourad GS; Schultes NP Protoplasma; 2016 Mar; 253(2):611-23. PubMed ID: 26022088 [TBL] [Abstract][Full Text] [Related]
19. Sparse panicle1 is required for inflorescence development in Setaria viridis and maize. Huang P; Jiang H; Zhu C; Barry K; Jenkins J; Sandor L; Schmutz J; Box MS; Kellogg EA; Brutnell TP Nat Plants; 2017 Apr; 3():17054. PubMed ID: 28418381 [TBL] [Abstract][Full Text] [Related]
20. Setaria viridis and Setaria italica, model genetic systems for the Panicoid grasses. Li P; Brutnell TP J Exp Bot; 2011 May; 62(9):3031-7. PubMed ID: 21459768 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]