These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 31928790)

  • 1. Immobilization of cesium with alkali-activated blast furnace slag.
    Komljenović M; Tanasijević G; Džunuzović N; Provis JL
    J Hazard Mater; 2020 Apr; 388():121765. PubMed ID: 31928790
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stabilization/solidification of chromium-bearing electroplating sludge with alkali-activated slag binders.
    Chen H; Yuan H; Mao L; Hashmi MZ; Xu F; Tang X
    Chemosphere; 2020 Feb; 240():124885. PubMed ID: 31568939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stabilization/solidification of hazardous and radioactive wastes with alkali-activated cements.
    Shi C; Fernández-Jiménez A
    J Hazard Mater; 2006 Oct; 137(3):1656-63. PubMed ID: 16787699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decalcification resistance of alkali-activated slag.
    Komljenović MM; Baščarević Z; Marjanović N; Nikolić V
    J Hazard Mater; 2012 Sep; 233-234():112-21. PubMed ID: 22818592
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrothermal preparation of tobermorite from blast furnace slag for Cs+ and Sr2+ sorption.
    Tsutsumi T; Nishimoto S; Kameshima Y; Miyake M
    J Hazard Mater; 2014 Feb; 266():174-81. PubMed ID: 24412625
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Influence of CaO and MgO on the Mechanical Properties of Alkali-Activated Blast Furnace Slag Powder.
    Feng S; Zhu J; Wang R; Qu Z; Song L; Wang H
    Materials (Basel); 2022 Sep; 15(17):. PubMed ID: 36079511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural evolution of binder gel in alkali-activated cements exposed to electrically accelerated leaching conditions.
    Park S; Yoon HN; Seo J; Lee HK; Jang JG
    J Hazard Mater; 2020 Apr; 387():121825. PubMed ID: 31892426
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immobilization of antimony waste slag by applying geopolymerization and stabilization/solidification technologies.
    Salihoglu G
    J Air Waste Manag Assoc; 2014 Nov; 64(11):1288-98. PubMed ID: 25509550
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physical and Chemical Relationships in Accelerated Carbonation Conditions of Alkali-Activated Cement Based on Type of Binder and Alkali Activator.
    Yamazaki Y; Kim J; Kadoya K; Hama Y
    Polymers (Basel); 2021 Feb; 13(4):. PubMed ID: 33672428
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calorimetric Studies of Alkali-Activated Blast-Furnace Slag Cements at Early Hydration Processes in the Temperature Range of 20-80 °C.
    Usherov-Marshak A; Vaičiukynienė D; Krivenko P; Bumanis G
    Materials (Basel); 2021 Oct; 14(19):. PubMed ID: 34640268
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of the Solidification of Radioactive Wastes Using Blast Furnace Slag as a Solidifying Agent.
    Jeon JH; Lee JH; Lee WC; Lee SW; Kim SO
    Materials (Basel); 2023 Sep; 16(19):. PubMed ID: 37834598
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative cesium speciation and leaching properties in alkali-activated municipal solid waste incineration fly ash and pyrophyllite-based systems.
    Shiota K; Nakamura T; Oshita K; Fujimori T; Takaoka M
    Chemosphere; 2018 Dec; 213():578-586. PubMed ID: 30268054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Solidification of Lead-Zinc Smelting Slag through Bentonite Supported Alkali-Activated Slag Cementitious Material.
    Mao Y; Muhammad F; Yu L; Xia M; Huang X; Jiao B; Shiau Y; Li D
    Int J Environ Res Public Health; 2019 Mar; 16(7):. PubMed ID: 30925811
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic leaching behavior of geogenic As in soils after cement-based stabilization/solidification.
    Li JS; Wang L; Tsang DCW; Beiyuan J; Poon CS
    Environ Sci Pollut Res Int; 2017 Dec; 24(36):27822-27832. PubMed ID: 28986736
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sustainable batching water options for one-part alkali-activated slag mortar: Sea water and reverse osmosis reject water.
    Luukkonen T; Yliniemi J; Kinnunen P; Illikainen M
    PLoS One; 2020; 15(11):e0242462. PubMed ID: 33186392
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immobilization of Radionuclide
    Zhang T; Li T; Zou J; Li Y; Zhi S; Jia Y; Cheeseman CR
    Materials (Basel); 2019 Dec; 13(1):. PubMed ID: 31905924
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Geopolymer Based on Mechanically Activated Air-cooled Blast Furnace Slag.
    Tole I; Rajczakowska M; Humad A; Kothari A; Cwirzen A
    Materials (Basel); 2020 Mar; 13(5):. PubMed ID: 32143319
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical and leaching behaviour of slag-cement and lime-activated slag stabilised/solidified contaminated soil.
    Kogbara RB; Al-Tabbaa A
    Sci Total Environ; 2011 May; 409(11):2325-35. PubMed ID: 21420148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solidification/stabilization of chromite ore processing residue using alkali-activated composite cementitious materials.
    Huang X; Zhuang R; Muhammad F; Yu L; Shiau Y; Li D
    Chemosphere; 2017 Feb; 168():300-308. PubMed ID: 27810528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generalized structural description of calcium-sodium aluminosilicate hydrate gels: the cross-linked substituted tobermorite model.
    Myers RJ; Bernal SA; San Nicolas R; Provis JL
    Langmuir; 2013 Apr; 29(17):5294-306. PubMed ID: 23534827
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.