These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 31929037)

  • 1. The size and distribution of tidal creeks affects salt marsh restoration.
    Wu Y; Liu J; Yan G; Zhai J; Cong L; Dai L; Zhang Z; Zhang M
    J Environ Manage; 2020 Apr; 259():110070. PubMed ID: 31929037
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ecosystem engineers drive creek formation in salt marshes.
    Vu HD; Wie Ski K; Pennings SC
    Ecology; 2017 Jan; 98(1):162-174. PubMed ID: 28052386
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study on spatio-temporal variation and hydrological connectivity of tidal creek evolution in Yancheng coastal wetlands.
    Zhou S; Wang C; Li Y; Huang W; Jia Y; Wang Y; Xu W; Qiu C; Liu H
    Environ Sci Pollut Res Int; 2023 Mar; 30(13):37143-37156. PubMed ID: 36571689
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantifying the Impact of Hydrological Connectivity on Salt Marsh Vegetation in the Liao River Delta Wetland.
    Chen K; Qu L; Cong P; Liang S; Sun Z; Han J
    Wetlands (Wilmington); 2023; 43(5):45. PubMed ID: 37193562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variability of polychaete secondary production in intertidal creek networks along a stream-order gradient.
    Chu T; Sheng Q; Wang S; Wu J
    PLoS One; 2014; 9(5):e97287. PubMed ID: 24817092
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vegetation zones as indicators of denitrification potential in salt marshes.
    Ooi SK; Barry A; Lawrence BA; Elphick CS; Helton AM
    Ecol Appl; 2022 Sep; 32(6):e2630. PubMed ID: 35403778
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Groundwater controls ecological zonation of salt marsh macrophytes.
    Wilson AM; Evans T; Moore W; Schutte CA; Joye SB; Hughes AH; Anderson JL
    Ecology; 2015 Mar; 96(3):840-9. PubMed ID: 26236879
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exotic Spartina alterniflora invasion alters ecosystem-atmosphere exchange of CH4 and N2O and carbon sequestration in a coastal salt marsh in China.
    Yuan J; Ding W; Liu D; Kang H; Freeman C; Xiang J; Lin Y
    Glob Chang Biol; 2015 Apr; 21(4):1567-80. PubMed ID: 25367159
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reclamation-induced tidal restriction increases dissolved carbon and greenhouse gases diffusive fluxes in salt marsh creeks.
    Tan LS; Ge ZM; Li SH; Li YL; Xie LN; Tang JW
    Sci Total Environ; 2021 Jun; 773():145684. PubMed ID: 33940760
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tidal creek and salt marsh sediments in South Carolina coastal estuaries: II. Distribution of organic contaminants.
    Sanger DM; Holland AF; Scott GI
    Arch Environ Contam Toxicol; 1999 Nov; 37(4):458-71. PubMed ID: 10508893
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parameterizing the Yellow River Delta tidal creek morphology using automated extraction from remote sensing images.
    Gong Z; Mou K; Wang Q; Qiu H; Zhang C; Zhou D
    Sci Total Environ; 2021 May; 769():144572. PubMed ID: 33482556
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decomposition and heavy metal variations of the typical halophyte litters in coastal marshes of the Yellow River estuary, China.
    Sun Z; Mou X; Sun W
    Chemosphere; 2016 Mar; 147():163-72. PubMed ID: 26766352
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing long-term outcomes of tidal restoration in New England salt marshes.
    Kutcher TE; Raposa KB
    J Environ Manage; 2023 Jul; 338():117832. PubMed ID: 37023604
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Saltmarsh plant responses to eutrophication.
    Johnson DS; Warren RS; Deegan LA; Mozdzer TJ
    Ecol Appl; 2016 Dec; 26(8):2647-2659. PubMed ID: 27763699
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of hydraulic restoration of San Pablo Marsh, California.
    Grismer ME; Kollar J; Syder J
    Environ Monit Assess; 2004 Nov; 98(1-3):69-92. PubMed ID: 15473530
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tidal creek and salt marsh sediments in South Carolina coastal estuaries: I. Distribution of trace metals.
    Sanger DM; Holland AF; Scott GI
    Arch Environ Contam Toxicol; 1999 Nov; 37(4):445-57. PubMed ID: 10508892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of the impacts of dock structures and land use on tidal creek ecosystems in South Carolina estuarine environments.
    Sanger DM; Holland AF; Hernandez DL
    Environ Manage; 2004 Mar; 33(3):385-400. PubMed ID: 15031758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Extracting method of tidal creek features under heterogeneous background at Yellow River Delta using remotely sensed imagery.].
    Wang QW; Gong ZN; Guan HL; Zhang L; Jing R; Wang X
    Ying Yong Sheng Tai Xue Bao; 2019 Sep; 30(9):3097-3107. PubMed ID: 31529885
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationships between ecosystem properties and sea-level rise vulnerability of tidal wetlands of the U.S. Mid-Atlantic.
    Elsey-Quirk T; Watson EB; Raper K; Kreeger D; Paudel B; Haaf L; Maxwell-Doyle M; Padeletti A; Reilly E; Velinsky DJ
    Environ Monit Assess; 2022 Mar; 194(4):292. PubMed ID: 35325310
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Depositional dynamics and vegetation succession in self-organizing processes of deltaic marshes.
    Hou W; Liang S; Sun Z; Ma Q; Hu X; Zhang R
    Sci Total Environ; 2024 Feb; 912():169402. PubMed ID: 38114033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.