These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 31929099)
1. Evaluation of dental composites resins formulated with non-toxic monomers derived from catechol. González-López JA; Pérez-Mondragón AA; Cuevas-Suárez CE; Trejo-Carbajal N; Herrera-González AM J Mech Behav Biomed Mater; 2020 Apr; 104():103613. PubMed ID: 31929099 [TBL] [Abstract][Full Text] [Related]
2. Dental composite resins with low polymerization stress based on a new allyl carbonate monomer. González-López JA; Pérez-Mondragón AA; Cuevas-Suárez CE; Esparza González SC; Herrera-González AM J Mech Behav Biomed Mater; 2020 Oct; 110():103955. PubMed ID: 32957247 [TBL] [Abstract][Full Text] [Related]
3. Preparation and evaluation of a BisGMA-free dental composite resin based on a novel trimethacrylate monomer. Pérez-Mondragón AA; Cuevas-Suárez CE; González-López JA; Trejo-Carbajal N; Meléndez-Rodríguez M; Herrera-González AM Dent Mater; 2020 Apr; 36(4):542-550. PubMed ID: 32061442 [TBL] [Abstract][Full Text] [Related]
4. Alternative monomer for BisGMA-free resin composites formulations. Fugolin AP; de Paula AB; Dobson A; Huynh V; Consani R; Ferracane JL; Pfeifer CS Dent Mater; 2020 Jul; 36(7):884-892. PubMed ID: 32402514 [TBL] [Abstract][Full Text] [Related]
5. High refractive index monofunctional monomers as promising diluents for dental composites. Catel Y; Angermann J; Fässler P; Fischer U; Schnur T; Moszner N Dent Mater; 2021 Feb; 37(2):351-358. PubMed ID: 33357987 [TBL] [Abstract][Full Text] [Related]
6. Solvent Degradation and Polymerization Shrinkage Reduction of Resin Composites Using Isobornyl Methacrylate. Favarão J; Oliveira DCRS; Rocha MG; Zanini MM; Abuna GF; Mendonça MJ; Sinhoreti MAC Braz Dent J; 2019 Jun; 30(3):272-278. PubMed ID: 31166397 [TBL] [Abstract][Full Text] [Related]
7. Poly(propylene glycol) and urethane dimethacrylates improve conversion of dental composites and reveal complexity of cytocompatibility testing. Walters NJ; Xia W; Salih V; Ashley PF; Young AM Dent Mater; 2016 Feb; 32(2):264-77. PubMed ID: 26764174 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of a photo-initiated copper(I)-catalyzed azide-alkyne cycloaddition polymer network with improved water stability and high mechanical performance as an ester-free dental restorative. Wang X; Gao G; Song HB; Zhang X; Stansbury JW; Bowman CN Dent Mater; 2021 Oct; 37(10):1592-1600. PubMed ID: 34456051 [TBL] [Abstract][Full Text] [Related]
9. A novel low shrinkage dimethacrylate monomer as an alternative to BisGMA for adhesive and resin-based composite applications. Lucena FS; Logan M; Lewis S; Deatherage N; Furuse AY; Pfeifer CS Braz Oral Res; 2024; 38():e097. PubMed ID: 39356904 [TBL] [Abstract][Full Text] [Related]
10. Effects of monomer ratios and highly radiopaque fillers on degree of conversion and shrinkage-strain of dental resin composites. Amirouche-Korichi A; Mouzali M; Watts DC Dent Mater; 2009 Nov; 25(11):1411-8. PubMed ID: 19683808 [TBL] [Abstract][Full Text] [Related]
11. Photopolymerizable dental composite resins with lower shrinkage stress and improved hydrolytic and hygroscopic behavior with a urethane monomer used as an additive. González-López JA; Fonseca-García A; Acosta-Ortiz R; Betancourt-Galindo R; Martínez-Ruiz E; Treviño-Martínez ME J Mech Behav Biomed Mater; 2022 Jun; 130():105189. PubMed ID: 35390679 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of a biobased polycarbonate interpenetrated network in a dental resin composite. Herrera-González AM; Cuevas-Suárez CE J Mech Behav Biomed Mater; 2023 Jul; 143():105876. PubMed ID: 37178634 [TBL] [Abstract][Full Text] [Related]
13. High performance dental resin composites with hydrolytically stable monomers. Wang X; Huyang G; Palagummi SV; Liu X; Skrtic D; Beauchamp C; Bowen R; Sun J Dent Mater; 2018 Feb; 34(2):228-237. PubMed ID: 29113700 [TBL] [Abstract][Full Text] [Related]
15. Dental resins based on dimer acid dimethacrylates: a route to high conversion with low polymerization shrinkage. Lu H; Trujillo-Lemon M; Ge J; Stansbury JW Compend Contin Educ Dent; 2010 May; 31 Spec No 2():1-4. PubMed ID: 20521567 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of bio-based monomers from isosorbide used in the formulation of dental composite resins. Herrera-González AM; Pérez-Mondragón AA; Cuevas-Suárez CE J Mech Behav Biomed Mater; 2019 Dec; 100():103371. PubMed ID: 31362097 [TBL] [Abstract][Full Text] [Related]
17. Investigations on a methacrylate-based flowable composite based on the SDR™ technology. Ilie N; Hickel R Dent Mater; 2011 Apr; 27(4):348-55. PubMed ID: 21194743 [TBL] [Abstract][Full Text] [Related]
18. Effects of a low-shrinkage methacrylate monomer and monoacylphosphine oxide photoinitiator on curing efficiency and mechanical properties of experimental resin-based composites. Manojlovic D; Dramićanin MD; Milosevic M; Zeković I; Cvijović-Alagić I; Mitrovic N; Miletic V Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():487-94. PubMed ID: 26478336 [TBL] [Abstract][Full Text] [Related]
19. Synthesis of an allyl carbonate monomer as alternative to TEGDMA in the formulation of dental composite resins. Cuevas-Suárez CE; González-López JA; da Silva AF; Piva E; Herrera-González AM J Mech Behav Biomed Mater; 2018 Nov; 87():148-154. PubMed ID: 30071485 [TBL] [Abstract][Full Text] [Related]
20. A low-shrinkage dental composite with epoxy-polyhedral oligomeric silsesquioxane. Li Z; Zhang H; Xiong G; Zhang J; Guo R; Li L; Zhou H; Chen G; Zhou Z; Li Q J Mech Behav Biomed Mater; 2020 Mar; 103():103515. PubMed ID: 31790850 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]