These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 31929667)

  • 1. A multilevel Monte Carlo finite element method for the stochastic Cahn-Hilliard-Cook equation.
    Khodadadian A; Parvizi M; Abbaszadeh M; Dehghan M; Heitzinger C
    Comput Mech; 2019; 64(4):937-949. PubMed ID: 31929667
    [TBL] [Abstract][Full Text] [Related]  

  • 2. POSTPROCESSING MIXED FINITE ELEMENT METHODS FOR SOLVING CAHN-HILLIARD EQUATION: METHODS AND ERROR ANALYSIS.
    Wang W; Chen L; Zhou J
    J Sci Comput; 2016 May; 67(2):724-746. PubMed ID: 27110063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coarsening kinetics from a variable-mobility Cahn-Hilliard equation: application of a semi-implicit Fourier spectral method.
    Zhu J; Chen LQ; Shen J; Tikare V
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Oct; 60(4 Pt A):3564-72. PubMed ID: 11970189
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Explicit Adaptive Finite Difference Method for the Cahn-Hilliard Equation.
    Ham S; Li Y; Jeong D; Lee C; Kwak S; Hwang Y; Kim J
    J Nonlinear Sci; 2022; 32(6):80. PubMed ID: 36089998
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mixed variational potentials and inherent symmetries of the Cahn-Hilliard theory of diffusive phase separation.
    Miehe C; Hildebrand FE; Böger L
    Proc Math Phys Eng Sci; 2014 Apr; 470(2164):20130641. PubMed ID: 24711722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parallel splitting solvers for the isogeometric analysis of the Cahn-Hilliard equation.
    Puzyrev V; Łoś M; Gurgul G; Calo V; Dzwinel W; Paszyński M
    Comput Methods Biomech Biomed Engin; 2019 Dec; 22(16):1269-1281. PubMed ID: 31498000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microphase separation patterns in diblock copolymers on curved surfaces using a nonlocal Cahn-Hilliard equation.
    Jeong D; Kim J
    Eur Phys J E Soft Matter; 2015 Nov; 38(11):117. PubMed ID: 26577816
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diffusion MRI simulation of realistic neurons with SpinDoctor and the Neuron Module.
    Fang C; Nguyen VD; Wassermann D; Li JR
    Neuroimage; 2020 Nov; 222():117198. PubMed ID: 32730957
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancement of damaged-image prediction through Cahn-Hilliard image inpainting.
    Carrillo JA; Kalliadasis S; Liang F; Perez SP
    R Soc Open Sci; 2021 May; 8(5):201294. PubMed ID: 34046183
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient numerical approaches with accelerated graphics processing unit (GPU) computations for Poisson problems and Cahn-Hilliard equations.
    Orizaga S; Fabien M; Millard M
    AIMS Math; 2024; 9(10):27471-27496. PubMed ID: 39391269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Positivity Preserving Truncated Euler-Maruyama Scheme for the Stochastic Age-Structured HIV/AIDS Model.
    Ren J; Yuan H; Zhang Q
    J Comput Biol; 2023 Mar; 30(3):293-322. PubMed ID: 36716171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Model for the phase separation of poly(N-isopropylacrylamide)-clay nanocomposite hydrogel based on energy-density functional.
    Bao X; Li H; Zhang H
    Phys Rev E; 2020 Jun; 101(6-1):062118. PubMed ID: 32688525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microdroplet deposition under a liquid medium.
    Villanueva W; Sjödahl J; Stjernström M; Roeraade J; Amberg G
    Langmuir; 2007 Jan; 23(3):1171-7. PubMed ID: 17241029
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multilevel Monte Carlo Methods for Stochastic Convection-Diffusion Eigenvalue Problems.
    Cui T; De Sterck H; Gilbert AD; Polishchuk S; Scheichl R
    J Sci Comput; 2024; 99(3):77. PubMed ID: 38708025
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stabilized second-order convex splitting schemes for Cahn-Hilliard models with application to diffuse-interface tumor-growth models.
    Wu X; van Zwieten GJ; van der Zee KG
    Int J Numer Method Biomed Eng; 2014 Feb; 30(2):180-203. PubMed ID: 24023005
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dimensionality dependence of aging in kinetics of diffusive phase separation: Behavior of order-parameter autocorrelation.
    Midya J; Majumder S; Das SK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022124. PubMed ID: 26382361
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Error estimates of finite element methods for fractional stochastic Navier-Stokes equations.
    Li X; Yang X
    J Inequal Appl; 2018; 2018(1):284. PubMed ID: 30839715
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic derivation of Cahn-Hilliard fluid models.
    Giovangigli V
    Phys Rev E; 2021 Nov; 104(5-1):054109. PubMed ID: 34942763
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis and Optimal Velocity Control of a Stochastic Convective Cahn-Hilliard Equation.
    Scarpa L
    J Nonlinear Sci; 2021; 31(2):45. PubMed ID: 34720441
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rigorous embedding of cell dynamics simulations in the Cahn-Hilliard-Cook framework: Imposing stability and isotropy.
    Sevink GJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):053309. PubMed ID: 26066281
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.