These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 31929667)
1. A multilevel Monte Carlo finite element method for the stochastic Cahn-Hilliard-Cook equation. Khodadadian A; Parvizi M; Abbaszadeh M; Dehghan M; Heitzinger C Comput Mech; 2019; 64(4):937-949. PubMed ID: 31929667 [TBL] [Abstract][Full Text] [Related]
2. POSTPROCESSING MIXED FINITE ELEMENT METHODS FOR SOLVING CAHN-HILLIARD EQUATION: METHODS AND ERROR ANALYSIS. Wang W; Chen L; Zhou J J Sci Comput; 2016 May; 67(2):724-746. PubMed ID: 27110063 [TBL] [Abstract][Full Text] [Related]
3. Coarsening kinetics from a variable-mobility Cahn-Hilliard equation: application of a semi-implicit Fourier spectral method. Zhu J; Chen LQ; Shen J; Tikare V Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Oct; 60(4 Pt A):3564-72. PubMed ID: 11970189 [TBL] [Abstract][Full Text] [Related]
4. An Explicit Adaptive Finite Difference Method for the Cahn-Hilliard Equation. Ham S; Li Y; Jeong D; Lee C; Kwak S; Hwang Y; Kim J J Nonlinear Sci; 2022; 32(6):80. PubMed ID: 36089998 [TBL] [Abstract][Full Text] [Related]
5. Mixed variational potentials and inherent symmetries of the Cahn-Hilliard theory of diffusive phase separation. Miehe C; Hildebrand FE; Böger L Proc Math Phys Eng Sci; 2014 Apr; 470(2164):20130641. PubMed ID: 24711722 [TBL] [Abstract][Full Text] [Related]
6. Parallel splitting solvers for the isogeometric analysis of the Cahn-Hilliard equation. Puzyrev V; Łoś M; Gurgul G; Calo V; Dzwinel W; Paszyński M Comput Methods Biomech Biomed Engin; 2019 Dec; 22(16):1269-1281. PubMed ID: 31498000 [TBL] [Abstract][Full Text] [Related]
7. Microphase separation patterns in diblock copolymers on curved surfaces using a nonlocal Cahn-Hilliard equation. Jeong D; Kim J Eur Phys J E Soft Matter; 2015 Nov; 38(11):117. PubMed ID: 26577816 [TBL] [Abstract][Full Text] [Related]
8. Diffusion MRI simulation of realistic neurons with SpinDoctor and the Neuron Module. Fang C; Nguyen VD; Wassermann D; Li JR Neuroimage; 2020 Nov; 222():117198. PubMed ID: 32730957 [TBL] [Abstract][Full Text] [Related]
9. Enhancement of damaged-image prediction through Cahn-Hilliard image inpainting. Carrillo JA; Kalliadasis S; Liang F; Perez SP R Soc Open Sci; 2021 May; 8(5):201294. PubMed ID: 34046183 [TBL] [Abstract][Full Text] [Related]
10. Efficient numerical approaches with accelerated graphics processing unit (GPU) computations for Poisson problems and Cahn-Hilliard equations. Orizaga S; Fabien M; Millard M AIMS Math; 2024; 9(10):27471-27496. PubMed ID: 39391269 [TBL] [Abstract][Full Text] [Related]
12. Model for the phase separation of poly(N-isopropylacrylamide)-clay nanocomposite hydrogel based on energy-density functional. Bao X; Li H; Zhang H Phys Rev E; 2020 Jun; 101(6-1):062118. PubMed ID: 32688525 [TBL] [Abstract][Full Text] [Related]
13. Microdroplet deposition under a liquid medium. Villanueva W; Sjödahl J; Stjernström M; Roeraade J; Amberg G Langmuir; 2007 Jan; 23(3):1171-7. PubMed ID: 17241029 [TBL] [Abstract][Full Text] [Related]
14. Multilevel Monte Carlo Methods for Stochastic Convection-Diffusion Eigenvalue Problems. Cui T; De Sterck H; Gilbert AD; Polishchuk S; Scheichl R J Sci Comput; 2024; 99(3):77. PubMed ID: 38708025 [TBL] [Abstract][Full Text] [Related]
15. Stabilized second-order convex splitting schemes for Cahn-Hilliard models with application to diffuse-interface tumor-growth models. Wu X; van Zwieten GJ; van der Zee KG Int J Numer Method Biomed Eng; 2014 Feb; 30(2):180-203. PubMed ID: 24023005 [TBL] [Abstract][Full Text] [Related]
16. Dimensionality dependence of aging in kinetics of diffusive phase separation: Behavior of order-parameter autocorrelation. Midya J; Majumder S; Das SK Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022124. PubMed ID: 26382361 [TBL] [Abstract][Full Text] [Related]
17. Error estimates of finite element methods for fractional stochastic Navier-Stokes equations. Li X; Yang X J Inequal Appl; 2018; 2018(1):284. PubMed ID: 30839715 [TBL] [Abstract][Full Text] [Related]