These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

495 related articles for article (PubMed ID: 31929855)

  • 1. Understanding of ROS-Inducing Strategy in Anticancer Therapy.
    Kim SJ; Kim HS; Seo YR
    Oxid Med Cell Longev; 2019; 2019():5381692. PubMed ID: 31929855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeting antioxidants for cancer therapy.
    Glasauer A; Chandel NS
    Biochem Pharmacol; 2014 Nov; 92(1):90-101. PubMed ID: 25078786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting Production of Reactive Oxygen Species as an Anticancer Strategy.
    Marioli-Sapsakou GK; Kourti M
    Anticancer Res; 2021 Dec; 41(12):5881-5902. PubMed ID: 34848443
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidative stress and therapeutic opportunities: focus on the Ewing's sarcoma family of tumors.
    Smith DG; Magwere T; Burchill SA
    Expert Rev Anticancer Ther; 2011 Feb; 11(2):229-49. PubMed ID: 21342042
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellular redox pathways as a therapeutic target in the treatment of cancer.
    Montero AJ; Jassem J
    Drugs; 2011 Jul; 71(11):1385-96. PubMed ID: 21812504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cancer cell killing via ROS: to increase or decrease, that is the question.
    Wang J; Yi J
    Cancer Biol Ther; 2008 Dec; 7(12):1875-84. PubMed ID: 18981733
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular chaperone Hsp90 as a target for oxidant-based anticancer therapies.
    Beck R; Dejeans N; Glorieux C; Pedrosa RC; Vásquez D; Valderrama JA; Calderon PB; Verrax J
    Curr Med Chem; 2011; 18(18):2816-25. PubMed ID: 21568884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New insights into redox homeostasis as a therapeutic target in B-cell malignancies.
    Graczyk-Jarzynka A; Zagozdzon R; Muchowicz A; Siernicka M; Juszczynski P; Firczuk M
    Curr Opin Hematol; 2017 Jul; 24(4):393-401. PubMed ID: 28402987
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Therapeutic strategies by modulating oxygen stress in cancer and inflammation.
    Fang J; Seki T; Maeda H
    Adv Drug Deliv Rev; 2009 Apr; 61(4):290-302. PubMed ID: 19249331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental therapeutics: targeting the redox Achilles heel of cancer.
    Cabello CM; Bair WB; Wondrak GT
    Curr Opin Investig Drugs; 2007 Dec; 8(12):1022-37. PubMed ID: 18058573
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reactive oxygen species (ROS) in cancer pathogenesis and therapy: An update on the role of ROS in anticancer action of benzophenanthridine alkaloids.
    Khan AQ; Rashid K; AlAmodi AA; Agha MV; Akhtar S; Hakeem I; Raza SS; Uddin S
    Biomed Pharmacother; 2021 Nov; 143():112142. PubMed ID: 34536761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reactive Oxygen Species Modulation in the Current Landscape of Anticancer Therapies.
    Li J; Lim JYS; Eu JQ; Chan AKMH; Goh BC; Wang L; Wong AL
    Antioxid Redox Signal; 2024 Aug; 41(4-6):322-341. PubMed ID: 38445392
    [No Abstract]   [Full Text] [Related]  

  • 13. Targeting the redox imbalance in mitochondria: A novel mode for cancer therapy.
    Mani S; Swargiary G; Ralph SJ
    Mitochondrion; 2022 Jan; 62():50-73. PubMed ID: 34758363
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The redox-active nanomaterial toolbox for cancer therapy.
    Ibañez IL; Notcovich C; Catalano PN; Bellino MG; Durán H
    Cancer Lett; 2015 Apr; 359(1):9-19. PubMed ID: 25597786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineered Polymeric Micelles for Combinational Oxidation Anticancer Therapy through Concurrent HO-1 Inhibition and ROS Generation.
    Noh J; Jung E; Lee J; Hyun H; Hong S; Lee D
    Biomacromolecules; 2019 Feb; 20(2):1109-1117. PubMed ID: 30605610
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reactive oxygen species in redox cancer therapy.
    Tong L; Chuang CC; Wu S; Zuo L
    Cancer Lett; 2015 Oct; 367(1):18-25. PubMed ID: 26187782
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of oxidative stress as an anticancer strategy.
    Gorrini C; Harris IS; Mak TW
    Nat Rev Drug Discov; 2013 Dec; 12(12):931-47. PubMed ID: 24287781
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reactive oxygen species in cancer: Current findings and future directions.
    Nakamura H; Takada K
    Cancer Sci; 2021 Oct; 112(10):3945-3952. PubMed ID: 34286881
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redox Control in Acute Lymphoblastic Leukemia: From Physiology to Pathology and Therapeutic Opportunities.
    Chen Y; Li J; Zhao Z
    Cells; 2021 May; 10(5):. PubMed ID: 34067520
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Docosahexaenoic Acid Coordinating with Sodium Selenite Promotes Paraptosis in Colorectal Cancer Cells by Disrupting the Redox Homeostasis and Activating the MAPK Pathway.
    Zhao S; Meng Y; Cai W; Luo Q; Gao H; Shen Q; Shi D
    Nutrients; 2024 Jun; 16(11):. PubMed ID: 38892670
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.