These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

495 related articles for article (PubMed ID: 31929855)

  • 21. A prooxidant mechanism for the anticancer and chemopreventive properties of plant polyphenols.
    Khan HY; Zubair H; Ullah MF; Ahmad A; Hadi SM
    Curr Drug Targets; 2012 Dec; 13(14):1738-49. PubMed ID: 23140285
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Oxidative stress and apoptosis: a new treatment paradigm in cancer.
    Engel RH; Evens AM
    Front Biosci; 2006 Jan; 11():300-12. PubMed ID: 16146732
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Targeting Oncogenic Nuclear Factor Kappa B Signaling with Redox-Active Agents for Cancer Treatment.
    Fouani L; Kovacevic Z; Richardson DR
    Antioxid Redox Signal; 2019 Mar; 30(8):1096-1123. PubMed ID: 29161883
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Glutathione reductase mediates drug resistance in glioblastoma cells by regulating redox homeostasis.
    Zhu Z; Du S; Du Y; Ren J; Ying G; Yan Z
    J Neurochem; 2018 Jan; 144(1):93-104. PubMed ID: 29105080
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The role of cellular reactive oxygen species in cancer chemotherapy.
    Yang H; Villani RM; Wang H; Simpson MJ; Roberts MS; Tang M; Liang X
    J Exp Clin Cancer Res; 2018 Nov; 37(1):266. PubMed ID: 30382874
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Oxidative Stress-Inducing Anticancer Therapies: Taking a Closer Look at Their Immunomodulating Effects.
    Van Loenhout J; Peeters M; Bogaerts A; Smits E; Deben C
    Antioxidants (Basel); 2020 Nov; 9(12):. PubMed ID: 33260826
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Redox regulation of cancer metastasis: molecular signaling and therapeutic opportunities.
    Yang W; Zou L; Huang C; Lei Y
    Drug Dev Res; 2014 Aug; 75(5):331-41. PubMed ID: 25160073
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Redox control of cancer cell destruction.
    Hegedűs C; Kovács K; Polgár Z; Regdon Z; Szabó É; Robaszkiewicz A; Forman HJ; Martner A; Virág L
    Redox Biol; 2018 Jun; 16():59-74. PubMed ID: 29477046
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Oxidative stress and protein aggregation during biological aging.
    Squier TC
    Exp Gerontol; 2001 Sep; 36(9):1539-50. PubMed ID: 11525876
    [TBL] [Abstract][Full Text] [Related]  

  • 30. PRX1 knockdown potentiates vitamin K3 toxicity in cancer cells: a potential new therapeutic perspective for an old drug.
    He T; Hatem E; Vernis L; Lei M; Huang ME
    J Exp Clin Cancer Res; 2015 Dec; 34():152. PubMed ID: 26689287
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Current Development of ROS-Modulating Agents as Novel Antitumor Therapy.
    Wang N; Wu Y; Bian J; Qian X; Lin H; Sun H; You Q; Zhang X
    Curr Cancer Drug Targets; 2017; 17(2):122-136. PubMed ID: 26881931
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pharmacological modulation of reactive oxygen species in cancer treatment.
    Ribas J; Mattiolo P; Boix J
    Curr Drug Targets; 2015; 16(1):31-7. PubMed ID: 25395102
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The emerging role of reactive oxygen species in cancer therapy.
    Renschler MF
    Eur J Cancer; 2004 Sep; 40(13):1934-40. PubMed ID: 15315800
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mitochondria and Mitochondrial ROS in Cancer: Novel Targets for Anticancer Therapy.
    Yang Y; Karakhanova S; Hartwig W; D'Haese JG; Philippov PP; Werner J; Bazhin AV
    J Cell Physiol; 2016 Dec; 231(12):2570-81. PubMed ID: 26895995
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Harnessing altered oxidative metabolism in cancer by augmented prooxidant therapy.
    Firczuk M; Bajor M; Graczyk-Jarzynka A; Fidyt K; Goral A; Zagozdzon R
    Cancer Lett; 2020 Feb; 471():1-11. PubMed ID: 31811907
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Clinically Evaluated Cancer Drugs Inhibiting Redox Signaling.
    Kirkpatrick DL; Powis G
    Antioxid Redox Signal; 2017 Feb; 26(6):262-273. PubMed ID: 26983373
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Design and discovery of novel quinazolinedione-based redox modulators as therapies for pancreatic cancer.
    Pathania D; Sechi M; Palomba M; Sanna V; Berrettini F; Sias A; Taheri L; Neamati N
    Biochim Biophys Acta; 2014 Jan; 1840(1):332-43. PubMed ID: 23954204
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Acute oxidant damage promoted on cancer cells by amitriptyline in comparison with some common chemotherapeutic drugs.
    Cordero MD; Sánchez-Alcázar JA; Bautista-Ferrufino MR; Carmona-López MI; Illanes M; Ríos MJ; Garrido-Maraver J; Alcudia A; Navas P; de Miguel M
    Anticancer Drugs; 2010 Nov; 21(10):932-44. PubMed ID: 20847644
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Induction of reactive oxygen species: an emerging approach for cancer therapy.
    Zou Z; Chang H; Li H; Wang S
    Apoptosis; 2017 Nov; 22(11):1321-1335. PubMed ID: 28936716
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reactive oxygen species in cancer biology and anticancer therapy.
    Yang Y; Karakhanova S; Werner J; Bazhin AV
    Curr Med Chem; 2013; 20(30):3677-92. PubMed ID: 23862622
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.