BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

474 related articles for article (PubMed ID: 31929855)

  • 21. Oxidative stress and apoptosis: a new treatment paradigm in cancer.
    Engel RH; Evens AM
    Front Biosci; 2006 Jan; 11():300-12. PubMed ID: 16146732
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Targeting Oncogenic Nuclear Factor Kappa B Signaling with Redox-Active Agents for Cancer Treatment.
    Fouani L; Kovacevic Z; Richardson DR
    Antioxid Redox Signal; 2019 Mar; 30(8):1096-1123. PubMed ID: 29161883
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Glutathione reductase mediates drug resistance in glioblastoma cells by regulating redox homeostasis.
    Zhu Z; Du S; Du Y; Ren J; Ying G; Yan Z
    J Neurochem; 2018 Jan; 144(1):93-104. PubMed ID: 29105080
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The role of cellular reactive oxygen species in cancer chemotherapy.
    Yang H; Villani RM; Wang H; Simpson MJ; Roberts MS; Tang M; Liang X
    J Exp Clin Cancer Res; 2018 Nov; 37(1):266. PubMed ID: 30382874
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Oxidative Stress-Inducing Anticancer Therapies: Taking a Closer Look at Their Immunomodulating Effects.
    Van Loenhout J; Peeters M; Bogaerts A; Smits E; Deben C
    Antioxidants (Basel); 2020 Nov; 9(12):. PubMed ID: 33260826
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Redox regulation of cancer metastasis: molecular signaling and therapeutic opportunities.
    Yang W; Zou L; Huang C; Lei Y
    Drug Dev Res; 2014 Aug; 75(5):331-41. PubMed ID: 25160073
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Redox control of cancer cell destruction.
    Hegedűs C; Kovács K; Polgár Z; Regdon Z; Szabó É; Robaszkiewicz A; Forman HJ; Martner A; Virág L
    Redox Biol; 2018 Jun; 16():59-74. PubMed ID: 29477046
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Oxidative stress and protein aggregation during biological aging.
    Squier TC
    Exp Gerontol; 2001 Sep; 36(9):1539-50. PubMed ID: 11525876
    [TBL] [Abstract][Full Text] [Related]  

  • 29. PRX1 knockdown potentiates vitamin K3 toxicity in cancer cells: a potential new therapeutic perspective for an old drug.
    He T; Hatem E; Vernis L; Lei M; Huang ME
    J Exp Clin Cancer Res; 2015 Dec; 34():152. PubMed ID: 26689287
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Current Development of ROS-Modulating Agents as Novel Antitumor Therapy.
    Wang N; Wu Y; Bian J; Qian X; Lin H; Sun H; You Q; Zhang X
    Curr Cancer Drug Targets; 2017; 17(2):122-136. PubMed ID: 26881931
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pharmacological modulation of reactive oxygen species in cancer treatment.
    Ribas J; Mattiolo P; Boix J
    Curr Drug Targets; 2015; 16(1):31-7. PubMed ID: 25395102
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The emerging role of reactive oxygen species in cancer therapy.
    Renschler MF
    Eur J Cancer; 2004 Sep; 40(13):1934-40. PubMed ID: 15315800
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mitochondria and Mitochondrial ROS in Cancer: Novel Targets for Anticancer Therapy.
    Yang Y; Karakhanova S; Hartwig W; D'Haese JG; Philippov PP; Werner J; Bazhin AV
    J Cell Physiol; 2016 Dec; 231(12):2570-81. PubMed ID: 26895995
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Harnessing altered oxidative metabolism in cancer by augmented prooxidant therapy.
    Firczuk M; Bajor M; Graczyk-Jarzynka A; Fidyt K; Goral A; Zagozdzon R
    Cancer Lett; 2020 Feb; 471():1-11. PubMed ID: 31811907
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Clinically Evaluated Cancer Drugs Inhibiting Redox Signaling.
    Kirkpatrick DL; Powis G
    Antioxid Redox Signal; 2017 Feb; 26(6):262-273. PubMed ID: 26983373
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Design and discovery of novel quinazolinedione-based redox modulators as therapies for pancreatic cancer.
    Pathania D; Sechi M; Palomba M; Sanna V; Berrettini F; Sias A; Taheri L; Neamati N
    Biochim Biophys Acta; 2014 Jan; 1840(1):332-43. PubMed ID: 23954204
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Acute oxidant damage promoted on cancer cells by amitriptyline in comparison with some common chemotherapeutic drugs.
    Cordero MD; Sánchez-Alcázar JA; Bautista-Ferrufino MR; Carmona-López MI; Illanes M; Ríos MJ; Garrido-Maraver J; Alcudia A; Navas P; de Miguel M
    Anticancer Drugs; 2010 Nov; 21(10):932-44. PubMed ID: 20847644
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Induction of reactive oxygen species: an emerging approach for cancer therapy.
    Zou Z; Chang H; Li H; Wang S
    Apoptosis; 2017 Nov; 22(11):1321-1335. PubMed ID: 28936716
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reactive oxygen species in cancer biology and anticancer therapy.
    Yang Y; Karakhanova S; Werner J; Bazhin AV
    Curr Med Chem; 2013; 20(30):3677-92. PubMed ID: 23862622
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Redox Potential and ROS-Mediated Nanomedicines for Improving Cancer Therapy.
    Glass SB; Gonzalez-Fajardo L; Beringhs AO; Lu X
    Antioxid Redox Signal; 2019 Feb; 30(5):747-761. PubMed ID: 28990403
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.