BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

473 related articles for article (PubMed ID: 31929855)

  • 41. Redox cycling of endogenous copper by ferulic acid leads to cellular DNA breakage and consequent cell death: A putative cancer chemotherapy mechanism.
    Sarwar T; Zafaryab M; Husain MA; Ishqi HM; Rehman SU; Rizvi MM; Tabish M
    Toxicol Appl Pharmacol; 2015 Dec; 289(2):251-61. PubMed ID: 26415834
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Molecular Insight into the Apoptotic Mechanism of Cancer Cells: An Explicative Review.
    Karati D; Kumar D
    Curr Mol Pharmacol; 2024; 17():e18761429273223. PubMed ID: 38389419
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Ambidextrous Approach To Disrupt Redox Balance in Tumor Cells with Increased ROS Production and Decreased GSH Synthesis for Cancer Therapy.
    Kou L; Sun R; Xiao S; Zheng Y; Chen Z; Cai A; Zheng H; Yao Q; Ganapathy V; Chen R
    ACS Appl Mater Interfaces; 2019 Jul; 11(30):26722-26730. PubMed ID: 31276364
    [TBL] [Abstract][Full Text] [Related]  

  • 44. ROS Modulator Molecules with Therapeutic Potential in Cancers Treatments.
    Nicco C; Batteux F
    Molecules; 2017 Dec; 23(1):. PubMed ID: 29301225
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The impact of reactive oxygen species on anticancer therapeutic strategies.
    Ivanova D; Bakalova R; Lazarova D; Gadjeva V; Zhelev Z
    Adv Clin Exp Med; 2013; 22(6):899-908. PubMed ID: 24431321
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Dietary antioxidants during cancer chemotherapy: impact on chemotherapeutic effectiveness and development of side effects.
    Conklin KA
    Nutr Cancer; 2000; 37(1):1-18. PubMed ID: 10965514
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Role of Reactive Oxygen Species (ROS) in Therapeutics and Drug Resistance in Cancer and Bacteria.
    Dharmaraja AT
    J Med Chem; 2017 Apr; 60(8):3221-3240. PubMed ID: 28135088
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Dual pH-sensitive oxidative stress generating micellar nanoparticles as a novel anticancer therapeutic agent.
    Park S; Kwon B; Yang W; Han E; Yoo W; Kwon BM; Lee D
    J Control Release; 2014 Dec; 196():19-27. PubMed ID: 25278257
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Reactive Oxygen and Nitrogen Species-Induced Protein Modifications: Implication in Carcinogenesis and Anticancer Therapy.
    Moldogazieva NT; Lutsenko SV; Terentiev AA
    Cancer Res; 2018 Nov; 78(21):6040-6047. PubMed ID: 30327380
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Targeting redox vulnerability of cancer cells by prooxidative intervention of a glutathione-activated Cu(II) pro-ionophore: Hitting three birds with one stone.
    Bao XZ; Dai F; Li XR; Zhou B
    Free Radic Biol Med; 2018 Aug; 124():342-352. PubMed ID: 29935260
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Heavy-metal-induced reactive oxygen species: phytotoxicity and physicochemical changes in plants.
    Shahid M; Pourrut B; Dumat C; Nadeem M; Aslam M; Pinelli E
    Rev Environ Contam Toxicol; 2014; 232():1-44. PubMed ID: 24984833
    [TBL] [Abstract][Full Text] [Related]  

  • 52. ROS homeostasis and metabolism: a critical liaison for cancer therapy.
    Kim J; Kim J; Bae JS
    Exp Mol Med; 2016 Nov; 48(11):e269. PubMed ID: 27811934
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Implications of reactive oxygen species on cancer formation and its treatment.
    Shah MA; Rogoff HA
    Semin Oncol; 2021 Jun; 48(3):238-245. PubMed ID: 34548190
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Dual Stimuli-Activatable Oxidative Stress Amplifying Agent as a Hybrid Anticancer Prodrug.
    Han E; Kwon B; Yoo D; Kang C; Khang G; Lee D
    Bioconjug Chem; 2017 Apr; 28(4):968-978. PubMed ID: 28192990
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Sulfiredoxin inhibitor induces preferential death of cancer cells through reactive oxygen species-mediated mitochondrial damage.
    Kim H; Lee GR; Kim J; Baek JY; Jo YJ; Hong SE; Kim SH; Lee J; Lee HI; Park SK; Kim HM; Lee HJ; Chang TS; Rhee SG; Lee JS; Jeong W
    Free Radic Biol Med; 2016 Feb; 91():264-74. PubMed ID: 26721593
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Drug-induced oxidative stress in cancer treatments: Angel or devil?
    Jiang H; Zuo J; Li B; Chen R; Luo K; Xiang X; Lu S; Huang C; Liu L; Tang J; Gao F
    Redox Biol; 2023 Jul; 63():102754. PubMed ID: 37224697
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Reactive oxygen species in cancer: a paradox between pro- and anti-tumour activities.
    Kohan R; Collin A; Guizzardi S; Tolosa de Talamoni N; Picotto G
    Cancer Chemother Pharmacol; 2020 Jul; 86(1):1-13. PubMed ID: 32572519
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The Tumorigenic Roles of the Cellular REDOX Regulatory Systems.
    Castaldo SA; Freitas JR; Conchinha NV; Madureira PA
    Oxid Med Cell Longev; 2016; 2016():8413032. PubMed ID: 26682014
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Oxidative Stress: A Key Modulator in Neurodegenerative Diseases.
    Singh A; Kukreti R; Saso L; Kukreti S
    Molecules; 2019 Apr; 24(8):. PubMed ID: 31013638
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Molecular pathways: reactive oxygen species homeostasis in cancer cells and implications for cancer therapy.
    Nogueira V; Hay N
    Clin Cancer Res; 2013 Aug; 19(16):4309-14. PubMed ID: 23719265
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.