BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 31930530)

  • 21. In vivo genome-editing screen identifies tumor suppressor genes that cooperate with Trp53 loss during mammary tumorigenesis.
    Heitink L; Whittle JR; Vaillant F; Capaldo BD; Dekkers JF; Dawson CA; Milevskiy MJG; Surgenor E; Tsai M; Chen HR; Christie M; Chen Y; Smyth GK; Herold MJ; Strasser A; Lindeman GJ; Visvader JE
    Mol Oncol; 2022 Mar; 16(5):1119-1131. PubMed ID: 35000262
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The use of CRISPR/Cas9-based gene editing strategies to explore cancer gene function in mice.
    van der Weyden L; Jonkers J; Adams DJ
    Curr Opin Genet Dev; 2021 Feb; 66():57-62. PubMed ID: 33429291
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Progress in the application of CRISPR: From gene to base editing.
    Wu W; Yang Y; Lei H
    Med Res Rev; 2019 Mar; 39(2):665-683. PubMed ID: 30171624
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Efficient CRISPR/Cas9-based genome editing in carrot cells.
    Klimek-Chodacka M; Oleszkiewicz T; Lowder LG; Qi Y; Baranski R
    Plant Cell Rep; 2018 Apr; 37(4):575-586. PubMed ID: 29332168
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In Vivo Base Editing of PCSK9 (Proprotein Convertase Subtilisin/Kexin Type 9) as a Therapeutic Alternative to Genome Editing.
    Chadwick AC; Wang X; Musunuru K
    Arterioscler Thromb Vasc Biol; 2017 Sep; 37(9):1741-1747. PubMed ID: 28751571
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Generation of Mouse Model (KI and CKO) via Easi-CRISPR.
    Shola DTN; Yang C; Han C; Norinsky R; Peraza RD
    Methods Mol Biol; 2021; 2224():1-27. PubMed ID: 33606203
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Conditional CRISPR-Cas Genome Editing in
    Bahuguna S; Redhai S; Zhou J; Wang T; Port F; Boutros M
    Cells; 2021 Nov; 10(11):. PubMed ID: 34831379
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optimizing sgRNA length to improve target specificity and efficiency for the GGTA1 gene using the CRISPR/Cas9 gene editing system.
    Matson AW; Hosny N; Swanson ZA; Hering BJ; Burlak C
    PLoS One; 2019; 14(12):e0226107. PubMed ID: 31821359
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Carboxylated nanodiamond-mediated CRISPR-Cas9 delivery of human retinoschisis mutation into human iPSCs and mouse retina.
    Yang TC; Chang CY; Yarmishyn AA; Mao YS; Yang YP; Wang ML; Hsu CC; Yang HY; Hwang DK; Chen SJ; Tsai ML; Lai YH; Tzeng Y; Chang CC; Chiou SH
    Acta Biomater; 2020 Jan; 101():484-494. PubMed ID: 31672582
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CRISPR/Cas9-Based Genome Editing Toolbox for Arabidopsis thaliana.
    Miki D; Zinta G; Zhang W; Peng F; Feng Z; Zhu JK
    Methods Mol Biol; 2021; 2200():121-146. PubMed ID: 33175375
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Harnessing accurate non-homologous end joining for efficient precise deletion in CRISPR/Cas9-mediated genome editing.
    Guo T; Feng YL; Xiao JJ; Liu Q; Sun XN; Xiang JF; Kong N; Liu SC; Chen GQ; Wang Y; Dong MM; Cai Z; Lin H; Cai XJ; Xie AY
    Genome Biol; 2018 Oct; 19(1):170. PubMed ID: 30340517
    [TBL] [Abstract][Full Text] [Related]  

  • 32. CRISPR single base-editing: in silico predictions to variant clonal cell lines.
    Dickson KA; Field N; Blackman T; Ma Y; Xie T; Kurangil E; Idrees S; Rathnayake SNH; Mahbub RM; Faiz A; Marsh DJ
    Hum Mol Genet; 2023 Aug; 32(17):2704-2716. PubMed ID: 37369005
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cas9-NG Greatly Expands the Targeting Scope of the Genome-Editing Toolkit by Recognizing NG and Other Atypical PAMs in Rice.
    Ren B; Liu L; Li S; Kuang Y; Wang J; Zhang D; Zhou X; Lin H; Zhou H
    Mol Plant; 2019 Jul; 12(7):1015-1026. PubMed ID: 30928635
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genotyping Protocols for Genetically Engineered Mice.
    Limaye A; Cho K; Hall B; Khillan JS; Kulkarni AB
    Curr Protoc; 2023 Nov; 3(11):e929. PubMed ID: 37984376
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Gene editing vectors for studying nicotinic acetylcholine receptors in cholinergic transmission.
    Peng C; Yan Y; Kim VJ; Engle SE; Berry JN; McIntosh JM; Neve RL; Drenan RM
    Eur J Neurosci; 2019 Aug; 50(3):2224-2238. PubMed ID: 29779223
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Scaffold-mediated non-viral delivery platform for CRISPR/Cas9-based genome editing.
    Chin JS; Chooi WH; Wang H; Ong W; Leong KW; Chew SY
    Acta Biomater; 2019 May; 90():60-70. PubMed ID: 30978509
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Simple Protocol for Generating and Genotyping Genome-Edited Mice With CRISPR-Cas9 Reagents.
    Fernández A; Morín M; Muñoz-Santos D; Josa S; Montero A; Rubio-Fernández M; Cantero M; Fernández J; Del Hierro MJ; Castrillo M; Moreno-Pelayo MÁ; Montoliu L
    Curr Protoc Mouse Biol; 2020 Mar; 10(1):e69. PubMed ID: 32159922
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9.
    Paquet D; Kwart D; Chen A; Sproul A; Jacob S; Teo S; Olsen KM; Gregg A; Noggle S; Tessier-Lavigne M
    Nature; 2016 May; 533(7601):125-9. PubMed ID: 27120160
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Efficient cancer modeling through CRISPR-Cas9/HDR-based somatic precision gene editing in mice.
    Bu W; Creighton CJ; Heavener KS; Gutierrez C; Dou Y; Ku AT; Zhang Y; Jiang W; Urrutia J; Jiang W; Yue F; Jia L; Ibrahim AA; Zhang B; Huang S; Li Y
    Sci Adv; 2023 May; 9(19):eade0059. PubMed ID: 37172086
    [TBL] [Abstract][Full Text] [Related]  

  • 40. CRISPR-Cas9: from Genome Editing to Cancer Research.
    Chen S; Sun H; Miao K; Deng CX
    Int J Biol Sci; 2016; 12(12):1427-1436. PubMed ID: 27994508
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.