BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 31930530)

  • 41. Small extrachromosomal circular DNA harboring targeted tumor suppressor gene mutations supports intratumor heterogeneity in mouse liver cancer induced by multiplexed CRISPR/Cas9.
    Guo T; Chen GQ; Li XF; Wang M; Liu KM; Yang XY; Liu SC; Feng YL; Liu PY; Lin H; Xie AY
    Genome Med; 2023 Oct; 15(1):80. PubMed ID: 37803452
    [TBL] [Abstract][Full Text] [Related]  

  • 42. CRISPR-Cas9 therapies in experimental mouse models of cancer.
    Estêvão D; Rios Costa N; da Costa RG; Medeiros R
    Future Oncol; 2018 Aug; 14(20):2083-2095. PubMed ID: 30027767
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Development of a CRISPR/Cas9 System for Methylococcus capsulatus
    Tapscott T; Guarnieri MT; Henard CA
    Appl Environ Microbiol; 2019 Jun; 85(11):. PubMed ID: 30926729
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Highly Efficient and Heritable Targeted Mutagenesis in Wheat via the
    Zhang S; Zhang R; Gao J; Gu T; Song G; Li W; Li D; Li Y; Li G
    Int J Mol Sci; 2019 Aug; 20(17):. PubMed ID: 31480315
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Small extracellular vesicles (sEVs)-based gene delivery platform for cell-specific CRISPR/Cas9 genome editing.
    Dubey S; Chen Z; Jiang YJ; Talis A; Molotkov A; Ali A; Mintz A; Momen-Heravi F
    Theranostics; 2024; 14(7):2777-2793. PubMed ID: 38773978
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Variation in zygotic CRISPR/Cas9 gene editing outcomes generates novel reporter and deletion alleles at the Gdf11 locus.
    Goldstein JM; Valido A; Lewandowski JP; Walker RG; Mills MJ; Messemer KA; Besseling P; Lee KH; Wattrus SJ; Cho M; Lee RT; Wagers AJ
    Sci Rep; 2019 Dec; 9(1):18613. PubMed ID: 31819086
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Multiplex nucleotide editing by high-fidelity Cas9 variants with improved efficiency in rice.
    Xu W; Song W; Yang Y; Wu Y; Lv X; Yuan S; Liu Y; Yang J
    BMC Plant Biol; 2019 Nov; 19(1):511. PubMed ID: 31752697
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Targeting RLIP with CRISPR/Cas9 controls tumor growth.
    Singhal J; Chikara S; Horne D; Awasthi S; Salgia R; Singhal SS
    Carcinogenesis; 2021 Feb; 42(1):48-57. PubMed ID: 32426802
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Optimizing CRISPR/Cas9 technology for precise correction of the Fgfr3-G374R mutation in achondroplasia in mice.
    Miao K; Zhang X; Su SM; Zeng J; Huang Z; Chan UI; Xu X; Deng CX
    J Biol Chem; 2019 Jan; 294(4):1142-1151. PubMed ID: 30487289
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Simple, efficient and open-source CRISPR/Cas9 strategy for multi-site genome editing in Populus tremula × alba.
    Triozzi PM; Schmidt HW; Dervinis C; Kirst M; Conde D
    Tree Physiol; 2021 Nov; 41(11):2216-2227. PubMed ID: 33960379
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effective CRISPR/Cas9-based nucleotide editing in zebrafish to model human genetic cardiovascular disorders.
    Tessadori F; Roessler HI; Savelberg SMC; Chocron S; Kamel SM; Duran KJ; van Haelst MM; van Haaften G; Bakkers J
    Dis Model Mech; 2018 Oct; 11(10):. PubMed ID: 30355756
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Genome editing with CRISPR/Cas9 in Pinus radiata (D. Don).
    Poovaiah C; Phillips L; Geddes B; Reeves C; Sorieul M; Thorlby G
    BMC Plant Biol; 2021 Aug; 21(1):363. PubMed ID: 34376154
    [TBL] [Abstract][Full Text] [Related]  

  • 53. CRISPR/Cas9 Genome Editing in Embryonic Stem Cells.
    Andrey G; Spielmann M
    Methods Mol Biol; 2017; 1468():221-34. PubMed ID: 27662879
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Somatic genome editing with the RCAS-TVA-CRISPR-Cas9 system for precision tumor modeling.
    Oldrini B; Curiel-García Á; Marques C; Matia V; Uluçkan Ö; Graña-Castro O; Torres-Ruiz R; Rodriguez-Perales S; Huse JT; Squatrito M
    Nat Commun; 2018 Apr; 9(1):1466. PubMed ID: 29654229
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Platforms of in vivo genome editing with inducible Cas9 for advanced cancer modeling.
    Jo N; Sogabe Y; Yamada Y; Ukai T; Kagawa H; Mitsunaga K; Woltjen K; Yamada Y
    Cancer Sci; 2019 Mar; 110(3):926-938. PubMed ID: 30588718
    [TBL] [Abstract][Full Text] [Related]  

  • 56. CRISPR/Cas-Mediated Base Editing: Technical Considerations and Practical Applications.
    Molla KA; Yang Y
    Trends Biotechnol; 2019 Oct; 37(10):1121-1142. PubMed ID: 30995964
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Delivery Aspects of CRISPR/Cas for in Vivo Genome Editing.
    Wilbie D; Walther J; Mastrobattista E
    Acc Chem Res; 2019 Jun; 52(6):1555-1564. PubMed ID: 31099553
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Development of Base Editors for Simultaneously Editing Multiple Loci in
    Tian K; Hong X; Guo M; Li Y; Wu H; Caiyin Q; Qiao J
    ACS Synth Biol; 2022 Nov; 11(11):3644-3656. PubMed ID: 36065829
    [No Abstract]   [Full Text] [Related]  

  • 59. Efficient Cas9 multiplex editing using unspaced sgRNA arrays engineering in a Potato virus X vector.
    Uranga M; Aragonés V; Selma S; Vázquez-Vilar M; Orzáez D; Daròs JA
    Plant J; 2021 Apr; 106(2):555-565. PubMed ID: 33484202
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Engineered Nanomaterials to Potentiate CRISPR/Cas9 Gene Editing for Cancer Therapy.
    Yi K; Kong H; Lao YH; Li D; Mintz RL; Fang T; Chen G; Tao Y; Li M; Ding J
    Adv Mater; 2024 Mar; 36(13):e2300665. PubMed ID: 37437039
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.