These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 31930547)
1. Correcting electrostatic artifacts due to net-charge changes in the calculation of ligand binding free energies. Öhlknecht C; Lier B; Petrov D; Fuchs J; Oostenbrink C J Comput Chem; 2020 Apr; 41(10):986-999. PubMed ID: 31930547 [TBL] [Abstract][Full Text] [Related]
2. Net charge changes in the calculation of relative ligand-binding free energies via classical atomistic molecular dynamics simulation. Reif MM; Oostenbrink C J Comput Chem; 2014 Jan; 35(3):227-43. PubMed ID: 24249099 [TBL] [Abstract][Full Text] [Related]
3. Calculating the binding free energies of charged species based on explicit-solvent simulations employing lattice-sum methods: an accurate correction scheme for electrostatic finite-size effects. Rocklin GJ; Mobley DL; Dill KA; Hünenberger PH J Chem Phys; 2013 Nov; 139(18):184103. PubMed ID: 24320250 [TBL] [Abstract][Full Text] [Related]
4. Charge-Changing Perturbations and Path Sampling via Classical Molecular Dynamic Simulations of Simple Guest-Host Systems. Öhlknecht C; Perthold JW; Lier B; Oostenbrink C J Chem Theory Comput; 2020 Dec; 16(12):7721-7734. PubMed ID: 33136389 [TBL] [Abstract][Full Text] [Related]
5. Charging free energy calculations using the Generalized Solvent Boundary Potential (GSBP) and periodic boundary condition: a comparative analysis using ion solvation and oxidation free energy in proteins. Lu X; Cui Q J Phys Chem B; 2013 Feb; 117(7):2005-18. PubMed ID: 23347181 [TBL] [Abstract][Full Text] [Related]
6. Accurate Calculation of Relative Binding Free Energies between Ligands with Different Net Charges. Chen W; Deng Y; Russell E; Wu Y; Abel R; Wang L J Chem Theory Comput; 2018 Dec; 14(12):6346-6358. PubMed ID: 30375870 [TBL] [Abstract][Full Text] [Related]
7. Computation of methodology-independent single-ion solvation properties from molecular simulations. III. Correction terms for the solvation free energies, enthalpies, entropies, heat capacities, volumes, compressibilities, and expansivities of solvated ions. Reif MM; Hünenberger PH J Chem Phys; 2011 Apr; 134(14):144103. PubMed ID: 21495738 [TBL] [Abstract][Full Text] [Related]
8. Molecular dynamics simulations and free energy calculations of netropsin and distamycin binding to an AAAAA DNA binding site. Dolenc J; Oostenbrink C; Koller J; van Gunsteren WF Nucleic Acids Res; 2005; 33(2):725-33. PubMed ID: 15687382 [TBL] [Abstract][Full Text] [Related]
9. Elimination of Finite-Size Effects on Binding Free Energies via the Warp-Drive Method. Ekimoto T; Yamane T; Ikeguchi M J Chem Theory Comput; 2018 Dec; 14(12):6544-6559. PubMed ID: 30404450 [TBL] [Abstract][Full Text] [Related]
10. Leveraging the sampling efficiency of RE-EDS in OpenMM using a shifted reaction-field with an atom-based cutoff. Rieder SR; Ries B; Kubincová A; Champion C; Barros EP; Hünenberger PH; Riniker S J Chem Phys; 2022 Sep; 157(10):104117. PubMed ID: 36109239 [TBL] [Abstract][Full Text] [Related]
11. The SAMPL6 SAMPLing challenge: assessing the reliability and efficiency of binding free energy calculations. Rizzi A; Jensen T; Slochower DR; Aldeghi M; Gapsys V; Ntekoumes D; Bosisio S; Papadourakis M; Henriksen NM; de Groot BL; Cournia Z; Dickson A; Michel J; Gilson MK; Shirts MR; Mobley DL; Chodera JD J Comput Aided Mol Des; 2020 May; 34(5):601-633. PubMed ID: 31984465 [TBL] [Abstract][Full Text] [Related]
12. Molecular dynamics simulations of a reversibly folding beta-heptapeptide in methanol: influence of the treatment of long-range electrostatic interactions. Reif MM; Kräutler V; Kastenholz MA; Daura X; Hünenberger PH J Phys Chem B; 2009 Mar; 113(10):3112-28. PubMed ID: 19228001 [TBL] [Abstract][Full Text] [Related]
13. Estimates of ligand-binding affinities supported by quantum mechanical methods. Söderhjelm P; Kongsted J; Genheden S; Ryde U Interdiscip Sci; 2010 Mar; 2(1):21-37. PubMed ID: 20640794 [TBL] [Abstract][Full Text] [Related]
14. How to deal with multiple binding poses in alchemical relative protein-ligand binding free energy calculations. Kaus JW; Harder E; Lin T; Abel R; McCammon JA; Wang L J Chem Theory Comput; 2015 Jun; 11(6):2670-9. PubMed ID: 26085821 [TBL] [Abstract][Full Text] [Related]
15. Simple and accurate scheme to compute electrostatic interaction: zero-dipole summation technique for molecular system and application to bulk water. Fukuda I; Kamiya N; Yonezawa Y; Nakamura H J Chem Phys; 2012 Aug; 137(5):054314. PubMed ID: 22894355 [TBL] [Abstract][Full Text] [Related]
16. Computation of methodology-independent ionic solvation free energies from molecular simulations. II. The hydration free energy of the sodium cation. Kastenholz MA; Hünenberger PH J Chem Phys; 2006 Jun; 124(22):224501. PubMed ID: 16784292 [TBL] [Abstract][Full Text] [Related]
17. Electrostatic embedding in large-scale first principles quantum mechanical calculations on biomolecules. Fox SJ; Pittock C; Fox T; Tautermann CS; Malcolm N; Skylaris CK J Chem Phys; 2011 Dec; 135(22):224107. PubMed ID: 22168680 [TBL] [Abstract][Full Text] [Related]
18. Communication: Quantum polarized fluctuating charge model: a practical method to include ligand polarizability in biomolecular simulations. Kimura SR; Rajamani R; Langley DR J Chem Phys; 2011 Dec; 135(23):231101. PubMed ID: 22191857 [TBL] [Abstract][Full Text] [Related]
19. Comparison of end-point continuum-solvation methods for the calculation of protein-ligand binding free energies. Genheden S; Ryde U Proteins; 2012 May; 80(5):1326-42. PubMed ID: 22274991 [TBL] [Abstract][Full Text] [Related]
20. Reaction-field electrostatics in molecular dynamics simulations: development of a conservative scheme compatible with an atomic cutoff. Kubincová A; Riniker S; Hünenberger PH Phys Chem Chem Phys; 2020 Nov; 22(45):26419-26437. PubMed ID: 33180085 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]