BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 31930566)

  • 1. Quantitative analysis of the relationship between structure and antioxidant activity of tripeptides.
    Uno S; Kodama D; Yukawa H; Shidara H; Akamatsu M
    J Pept Sci; 2020 Mar; 26(3):e3238. PubMed ID: 31930566
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of structure-antioxidant activity relationship of peptides in free radical systems using QSAR models: key sequence positions and their amino acid properties.
    Li YW; Li B
    J Theor Biol; 2013 Feb; 318():29-43. PubMed ID: 23127747
    [TBL] [Abstract][Full Text] [Related]  

  • 3. QSAR Study on Antioxidant Tripeptides and the Antioxidant Activity of the Designed Tripeptides in Free Radical Systems.
    Chen N; Chen J; Yao B; Li Z
    Molecules; 2018 Jun; 23(6):. PubMed ID: 29890782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure-activity relationship study of antioxidative peptides by QSAR modeling: the amino acid next to C-terminus affects the activity.
    Li YW; Li B; He J; Qian P
    J Pept Sci; 2011 Jun; 17(6):454-62. PubMed ID: 21491545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antioxidant activities of major tryptophyllin L peptides: A joint investigation of Gaussian-based 3D-QSAR and radical scavenging experiments.
    Tran TTN; Tran DP; Nguyen VC; Tran TDT; Bui TTT; Bowie JH
    J Pept Sci; 2021 Apr; 27(4):e3295. PubMed ID: 33410242
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative Structure-Activity Relationship Study of Antioxidant Tripeptides Based on Model Population Analysis.
    Deng B; Long H; Tang T; Ni X; Chen J; Yang G; Zhang F; Cao R; Cao D; Zeng M; Yi L
    Int J Mol Sci; 2019 Feb; 20(4):. PubMed ID: 30823542
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antioxidant capacity of reaction products limits the applicability of the Trolox Equivalent Antioxidant Capacity (TEAC) assay.
    Arts MJ; Haenen GR; Voss HP; Bast A
    Food Chem Toxicol; 2004 Jan; 42(1):45-9. PubMed ID: 14630129
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Virtual screening and rational design of antioxidant peptides based on tryptophyllin L structures isolated from the Litoria rubella frog.
    Tran TTN; Tran DP; Nguyen TMA; Tran TH; Phan NNA; Nguyen VC; Nguyen VT; Bowie JH
    J Pept Sci; 2022 Apr; 28(4):e3380. PubMed ID: 34779094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comprehensive Evaluation and Comparison of Machine Learning Methods in QSAR Modeling of Antioxidant Tripeptides.
    Du Z; Wang D; Li Y
    ACS Omega; 2022 Jul; 7(29):25760-25771. PubMed ID: 35910147
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In silico identification of milk antihypertensive di- and tripeptides involved in angiotensin I-converting enzyme inhibitory activity.
    Vukic VR; Vukic DV; Milanovic SD; Ilicic MD; Kanuric KG; Johnson MS
    Nutr Res; 2017 Oct; 46():22-30. PubMed ID: 29173648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure-guided discovery of antioxidant peptides bounded to the Keap1 receptor as hunter for potential dietary antioxidants.
    Yin JY; Han YN; Liu MQ; Piao ZH; Zhang X; Xue YT; Zhang YH
    Food Chem; 2022 Mar; 373(Pt A):130999. PubMed ID: 34710694
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Structure-Activity Relationship of the Antioxidant Peptides from Natural Proteins.
    Zou TB; He TP; Li HB; Tang HW; Xia EQ
    Molecules; 2016 Jan; 21(1):72. PubMed ID: 26771594
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of molecular structure on kinetics and dynamics of the trolox equivalent antioxidant capacity assay with ABTS(+•).
    Tian X; Schaich KM
    J Agric Food Chem; 2013 Jun; 61(23):5511-9. PubMed ID: 23659464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extraction, identification and structure-activity relationship of antioxidant peptides from sesame (Sesamum indicum L.) protein hydrolysate.
    Lu X; Zhang L; Sun Q; Song G; Huang J
    Food Res Int; 2019 Feb; 116():707-716. PubMed ID: 30716998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The index of ideality of correlation improves the predictive potential of models of the antioxidant activity of tripeptides from frog skin (Litoria rubella).
    Toropova AP; Toropov AA; Roncaglioni A; Benfenati E
    Comput Biol Med; 2021 Jun; 133():104370. PubMed ID: 33838612
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Purification and characterization of high antioxidant peptides from duck egg white protein hydrolysates.
    Ren Y; Wu H; Li X; Lai F; Xiao X
    Biochem Biophys Res Commun; 2014 Oct; 452(4):888-94. PubMed ID: 25181341
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new QSAR model, for angiotensin I-converting enzyme inhibitory oligopeptides.
    Sagardia I; Roa-Ureta RH; Bald C
    Food Chem; 2013 Feb; 136(3-4):1370-6. PubMed ID: 23194537
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding the nature of bitter-taste di- and tripeptides derived from food proteins based on chemometric analysis.
    Iwaniak A; Hrynkiewicz M; Bucholska J; Minkiewicz P; Darewicz M
    J Food Biochem; 2019 Jan; 43(1):e12500. PubMed ID: 31353496
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antioxidant Activity of Selected Phenolic Acids-Ferric Reducing Antioxidant Power Assay and QSAR Analysis of the Structural Features.
    Spiegel M; Kapusta K; Kołodziejczyk W; Saloni J; Żbikowska B; Hill GA; Sroka Z
    Molecules; 2020 Jul; 25(13):. PubMed ID: 32645868
    [TBL] [Abstract][Full Text] [Related]  

  • 20. QSAR models for antioxidant activity of new coumarin derivatives.
    Erzincan P; Saçan MT; Yüce-Dursun B; Danış Ö; Demir S; Erdem SS; Ogan A
    SAR QSAR Environ Res; 2015; 26(7-9):721-37. PubMed ID: 26470736
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.