These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Design of photocurable, biodegradable scaffolds for liver lobule regeneration via digital light process-additive manufacturing. Teng CL; Chen JY; Chang TL; Hsiao SK; Hsieh YK; Villalobos Gorday K; Cheng YL; Wang J Biofabrication; 2020 Jun; 12(3):035024. PubMed ID: 31918413 [TBL] [Abstract][Full Text] [Related]
3. A poly(glycerol sebacate)-coated mesoporous bioactive glass scaffold with adjustable mechanical strength, degradation rate, controlled-release and cell behavior for bone tissue engineering. Lin D; Yang K; Tang W; Liu Y; Yuan Y; Liu C Colloids Surf B Biointerfaces; 2015 Jul; 131():1-11. PubMed ID: 25935647 [TBL] [Abstract][Full Text] [Related]
4. In vitro human chondrocyte culture on plasma-treated poly(glycerol sebacate) scaffolds. Theerathanagorn T; Klangjorhor J; Sakulsombat M; Pothacharoen P; Pruksakorn D; Kongtawelert P; Janvikul W J Biomater Sci Polym Ed; 2015; 26(18):1386-401. PubMed ID: 26387514 [TBL] [Abstract][Full Text] [Related]
5. Fabrication of electrospun HPGL scaffolds via glycidyl methacrylate cross-linker: Morphology, mechanical and biological properties. Baratéla FJC; Higa OZ; Dos Passos ED; de Queiroz AAA Mater Sci Eng C Mater Biol Appl; 2017 Apr; 73():72-79. PubMed ID: 28183666 [TBL] [Abstract][Full Text] [Related]
6. Biomimetic poly(glycerol sebacate)/polycaprolactone blend scaffolds for cartilage tissue engineering. Liu Y; Tian K; Hao J; Yang T; Geng X; Zhang W J Mater Sci Mater Med; 2019 Apr; 30(5):53. PubMed ID: 31037512 [TBL] [Abstract][Full Text] [Related]
7. Electrospun nanofibrous thermoplastic polyurethane/poly(glycerol sebacate) hybrid scaffolds for vocal fold tissue engineering applications. Jiang L; Jiang Y; Stiadle J; Wang X; Wang L; Li Q; Shen C; Thibeault SL; Turng LS Mater Sci Eng C Mater Biol Appl; 2019 Jan; 94():740-749. PubMed ID: 30423760 [TBL] [Abstract][Full Text] [Related]
8. Nozzle-free electrospinning of Polyvinylpyrrolidone/Poly(glycerol sebacate) fibrous scaffolds for skin tissue engineering applications. Keirouz A; Fortunato G; Zhang M; Callanan A; Radacsi N Med Eng Phys; 2019 Sep; 71():56-67. PubMed ID: 31257053 [TBL] [Abstract][Full Text] [Related]
9. [Research process of the preparation of electrostatic spinning of poly-glycerol sebacate and the application in tissue engineering]. Zhang X; Li W Hua Xi Kou Qiang Yi Xue Za Zhi; 2015 Oct; 33(5):539-42. PubMed ID: 26688952 [TBL] [Abstract][Full Text] [Related]
10. Effect of different exposure times on physicochemical, mechanical and biological properties of PGS scaffolds treated with plasma of iodine-doped polypyrrole. Martín-Pat GE; Rodriguez-Fuentes N; Cervantes-Uc JM; Rosales-Ibáñez R; Carrillo-Escalante HJ; Ku-Gonzalez AF; Avila-Ortega A; Hernandez-Sanchez F J Biomater Appl; 2020; 35(4-5):485-499. PubMed ID: 32659135 [TBL] [Abstract][Full Text] [Related]
11. Preparation of aligned poly(glycerol sebacate) fibrous membranes for anisotropic tissue engineering. Wu HJ; Hu MH; Tuan-Mu HY; Hu JJ Mater Sci Eng C Mater Biol Appl; 2019 Jul; 100():30-37. PubMed ID: 30948065 [TBL] [Abstract][Full Text] [Related]
12. 3D structural patterns in scalable, elastomeric scaffolds guide engineered tissue architecture. Kolewe ME; Park H; Gray C; Ye X; Langer R; Freed LE Adv Mater; 2013 Aug; 25(32):4459-65. PubMed ID: 23765688 [TBL] [Abstract][Full Text] [Related]
13. 3D printing of photocurable poly(glycerol sebacate) elastomers. Yeh YC; Highley CB; Ouyang L; Burdick JA Biofabrication; 2016 Oct; 8(4):045004. PubMed ID: 27716633 [TBL] [Abstract][Full Text] [Related]
14. Poly(ε-caprolactone)/poly(glycerol sebacate) electrospun scaffolds for cardiac tissue engineering using benign solvents. Vogt L; Rivera LR; Liverani L; Piegat A; El Fray M; Boccaccini AR Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109712. PubMed ID: 31349433 [TBL] [Abstract][Full Text] [Related]
15. A poly(glycerol sebacate) based photo/thermo dual curable biodegradable and biocompatible polymer for biomedical applications. Wang M; Lei D; Liu Z; Chen S; Sun L; Lv Z; Huang P; Jiang Z; You Z J Biomater Sci Polym Ed; 2017 Oct; 28(15):1728-1739. PubMed ID: 28657862 [TBL] [Abstract][Full Text] [Related]
16. PEGylated poly(glycerol sebacate)-modified calcium phosphate scaffolds with desirable mechanical behavior and enhanced osteogenic capacity. Ma Y; Zhang W; Wang Z; Wang Z; Xie Q; Niu H; Guo H; Yuan Y; Liu C Acta Biomater; 2016 Oct; 44():110-24. PubMed ID: 27544808 [TBL] [Abstract][Full Text] [Related]
17. Hybrid Aorta Constructs via In Situ Crosslinking of Poly(glycerol-sebacate) Elastomer Within a Decellularized Matrix. Guler S; Hosseinian P; Aydin HM Tissue Eng Part C Methods; 2017 Jan; 23(1):21-29. PubMed ID: 27875930 [TBL] [Abstract][Full Text] [Related]
18. Promoting neural cell proliferation and differentiation by incorporating lignin into electrospun poly(vinyl alcohol) and poly(glycerol sebacate) fibers. Saudi A; Amini S; Amirpour N; Kazemi M; Zargar Kharazi A; Salehi H; Rafienia M Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():110005. PubMed ID: 31499996 [TBL] [Abstract][Full Text] [Related]
19. β-Tricalcium phosphate/poly(glycerol sebacate) scaffolds with robust mechanical property for bone tissue engineering. Yang K; Zhang J; Ma X; Ma Y; Kan C; Ma H; Li Y; Yuan Y; Liu C Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():37-47. PubMed ID: 26249563 [TBL] [Abstract][Full Text] [Related]
20. Poly (glycerol sebacate) elastomer supports bone regeneration by its mechanical properties being closer to osteoid tissue rather than to mature bone. Zaky SH; Lee KW; Gao J; Jensen A; Verdelis K; Wang Y; Almarza AJ; Sfeir C Acta Biomater; 2017 May; 54():95-106. PubMed ID: 28110067 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]