BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 31930976)

  • 41. Critical thermal limits affected differently by developmental and adult thermal fluctuations.
    Salachan PV; Sørensen JG
    J Exp Biol; 2017 Dec; 220(Pt 23):4471-4478. PubMed ID: 28982965
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Separating multiple sources of variation on heat resistance in Drosophila hydei.
    Johnstone M; Schiffer M; Hoffmann AA
    J Insect Physiol; 2017 Jan; 96():122-127. PubMed ID: 27816712
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Plasticity Is Key to Success of Drosophila suzukii (Diptera: Drosophilidae) Invasion.
    Little CM; Chapman TW; Hillier NK
    J Insect Sci; 2020 May; 20(3):. PubMed ID: 32417920
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Insect responses to heat: physiological mechanisms, evolution and ecological implications in a warming world.
    González-Tokman D; Córdoba-Aguilar A; Dáttilo W; Lira-Noriega A; Sánchez-Guillén RA; Villalobos F
    Biol Rev Camb Philos Soc; 2020 Jun; 95(3):802-821. PubMed ID: 32035015
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Rapid induction of the heat hardening response in an Arctic insect.
    Sørensen MH; Kristensen TN; Lauritzen JMS; Noer NK; Høye TT; Bahrndorff S
    Biol Lett; 2019 Oct; 15(10):20190613. PubMed ID: 31615371
    [TBL] [Abstract][Full Text] [Related]  

  • 46. No patterns in thermal plasticity along a latitudinal gradient in Drosophila simulans from eastern Australia.
    van Heerwaarden B; Lee RF; Overgaard J; Sgrò CM
    J Evol Biol; 2014 Nov; 27(11):2541-53. PubMed ID: 25262984
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Basal cold but not heat tolerance constrains plasticity among Drosophila species (Diptera: Drosophilidae).
    Nyamukondiwa C; Terblanche JS; Marshall KE; Sinclair BJ
    J Evol Biol; 2011 Sep; 24(9):1927-38. PubMed ID: 21658189
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Cold tolerance of third-instar Drosophila suzukii larvae.
    Jakobs R; Ahmadi B; Houben S; Gariepy TD; Sinclair BJ
    J Insect Physiol; 2017 Jan; 96():45-52. PubMed ID: 27765625
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Sensitivity to thermal extremes in Australian Drosophila implies similar impacts of climate change on the distribution of widespread and tropical species.
    Overgaard J; Kearney MR; Hoffmann AA
    Glob Chang Biol; 2014 Jun; 20(6):1738-50. PubMed ID: 24549716
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Thermal tolerance in widespread and tropical Drosophila species: does phenotypic plasticity increase with latitude?
    Overgaard J; Kristensen TN; Mitchell KA; Hoffmann AA
    Am Nat; 2011 Oct; 178 Suppl 1():S80-96. PubMed ID: 21956094
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cold acclimation triggers lipidomic and metabolic adjustments in the spotted wing drosophila
    Enriquez T; Colinet H
    Am J Physiol Regul Integr Comp Physiol; 2019 Jun; 316(6):R751-R763. PubMed ID: 30943049
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Strong acclimation effect of temperature and humidity on heat tolerance of the Arctic collembolan Megaphorura arctica.
    Christoffersen SN; Pertoldi C; Sørensen JG; Kristensen TN; Bruhn D; Bahrndorff S
    J Exp Biol; 2024 Jun; 227(12):. PubMed ID: 38841875
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Divergent strategies for adaptations to stress resistance in two tropical Drosophila species: effects of developmental acclimation in D. bipectinata and the invasive species D. malerkotliana.
    Parkash R; Singh D; Lambhod C
    J Exp Biol; 2014 Mar; 217(Pt 6):924-34. PubMed ID: 24265421
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Functional transcriptome analyses of Drosophila suzukii antennae reveal mating-dependent olfaction plasticity in females.
    Crava CM; Sassù F; Tait G; Becher PG; Anfora G
    Insect Biochem Mol Biol; 2019 Feb; 105():51-59. PubMed ID: 30590188
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Acclimation capacity and rate change through life in the zooplankton
    Burton T; Lakka HK; Einum S
    Proc Biol Sci; 2020 Apr; 287(1924):20200189. PubMed ID: 32228409
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Heat-hardening effects on mating success at high temperature in Drosophila melanogaster.
    Stazione L; Norry FM; Sambucetti P
    J Therm Biol; 2019 Feb; 80():172-177. PubMed ID: 30784483
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Developmental Acclimation of Drosophila suzukii (Diptera: Drosophilidae) and Its Effect on Diapause and Winter Stress Tolerance.
    Wallingford AK; Loeb GM
    Environ Entomol; 2016 Aug; 45(4):1081-9. PubMed ID: 27412194
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Antioxidant capacity, lipid peroxidation, and lipid composition changes during long-term and short-term thermal acclimation in Daphnia.
    Coggins BL; Collins JW; Holbrook KJ; Yampolsky LY
    J Comp Physiol B; 2017 Dec; 187(8):1091-1106. PubMed ID: 28389697
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Metabolic and functional characterization of effects of developmental temperature in Drosophila melanogaster.
    Schou MF; Kristensen TN; Pedersen A; Karlsson BG; Loeschcke V; Malmendal A
    Am J Physiol Regul Integr Comp Physiol; 2017 Feb; 312(2):R211-R222. PubMed ID: 27927623
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Thermal tolerance and acclimation capacity in the European common frog (Rana temporaria) change throughout ontogeny.
    Ruthsatz K; Dausmann KH; Peck MA; Glos J
    J Exp Zool A Ecol Integr Physiol; 2022 Jun; 337(5):477-490. PubMed ID: 35226414
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.