BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 31931000)

  • 1. Frequent minty chewing gum use is associated with increased trigeminal sensitivity: An fMRI study.
    Han P; Penzler M; Jonathan W; Hummel T
    Brain Res; 2020 Mar; 1730():146663. PubMed ID: 31931000
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Habitual Exposure to Trigeminal Stimuli and Its Effects on the Processing of Chemosensory Stimuli.
    Joshi A; Thaploo D; Yan X; Zang Y; Warr J; Hummel T
    Neuroscience; 2021 Aug; 470():70-77. PubMed ID: 34274425
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pepper with and without a sting: Brain processing of intranasal trigeminal and olfactory stimuli from the same source.
    Han P; Mann S; Raue C; Warr J; Hummel T
    Brain Res; 2018 Dec; 1700():41-46. PubMed ID: 30006292
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bimodal odor processing with a trigeminal component at sub- and suprathreshold levels.
    Pellegrino R; Drechsler E; Hummel C; Warr J; Hummel T
    Neuroscience; 2017 Nov; 363():43-49. PubMed ID: 28739522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multidimensional representation of odors in the human olfactory cortex.
    Fournel A; Ferdenzi C; Sezille C; Rouby C; Bensafi M
    Hum Brain Mapp; 2016 Jun; 37(6):2161-72. PubMed ID: 26991044
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of chewing menthol gum on the alertness of healthy volunteers and those with an upper respiratory tract illness.
    Smith AP; Boden C
    Stress Health; 2013 Apr; 29(2):138-42. PubMed ID: 22674677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preliminary evidence for differential olfactory and trigeminal processing in combat veterans with and without PTSD.
    Cortese BM; Schumann AY; Howell AN; McConnell PA; Yang QX; Uhde TW
    Neuroimage Clin; 2018; 17():378-387. PubMed ID: 29159050
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Olfactory-trigeminal integration in the primary olfactory cortex.
    Karunanayaka PR; Lu J; Elyan R; Yang QX; Sathian K
    Hum Brain Mapp; 2024 Jul; 45(10):e26772. PubMed ID: 38962966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human olfactory lateralization requires trigeminal activation.
    Croy I; Schulz M; Blumrich A; Hummel C; Gerber J; Hummel T
    Neuroimage; 2014 Sep; 98():289-95. PubMed ID: 24825502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Olfactory Costimulation Influences Intranasal Somatosensory Perception.
    Karunanayaka PR; Lu J; Yang QX; Sathian K
    Multisens Res; 2020 Aug; 33(7):723-736. PubMed ID: 33706271
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Some like it, some do not: behavioral responses and central processing of olfactory-trigeminal mixture perception.
    Müschenich FS; Sichtermann T; Di Francesco ME; Rodriguez-Raecke R; Heim L; Singer M; Wiesmann M; Freiherr J
    Brain Struct Funct; 2021 Jan; 226(1):247-261. PubMed ID: 33355693
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Subjective changes in nasal patency after chewing a menthol-containing gum in patients with olfactory loss.
    Schriever VA; Hummel T
    Acta Otolaryngol; 2015 Mar; 135(3):254-7. PubMed ID: 25622621
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neuropeptide receptors provide a signalling pathway for trigeminal modulation of olfactory transduction.
    Daiber P; Genovese F; Schriever VA; Hummel T; Möhrlen F; Frings S
    Eur J Neurosci; 2013 Feb; 37(4):572-82. PubMed ID: 23205840
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The neuronal correlates of intranasal trigeminal function-an ALE meta-analysis of human functional brain imaging data.
    Albrecht J; Kopietz R; Frasnelli J; Wiesmann M; Hummel T; Lundström JN
    Brain Res Rev; 2010 Mar; 62(2):183-96. PubMed ID: 19913573
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Odor-induced sound localization bias under unilateral intranasal trigeminal stimulation.
    Liang K; Wang W; Lei X; Zeng H; Gong W; Lou C; Chen L
    Chem Senses; 2022 Jan; 47():. PubMed ID: 36326595
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissociated neural representations induced by complex and simple odorant molecules.
    Sezille C; Ferdenzi C; Chakirian A; Fournel A; Thevenet M; Gerber J; Hummel T; Bensafi M
    Neuroscience; 2015 Feb; 287():23-31. PubMed ID: 25526821
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dissociated representations of pleasant and unpleasant olfacto-trigeminal mixtures: an FMRI study.
    Bensafi M; Iannilli E; Poncelet J; Seo HS; Gerber J; Rouby C; Hummel T
    PLoS One; 2012; 7(6):e38358. PubMed ID: 22701631
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cross-modal integration of intranasal stimuli: a functional magnetic resonance imaging study.
    Boyle JA; Frasnelli J; Gerber J; Heinke M; Hummel T
    Neuroscience; 2007 Oct; 149(1):223-31. PubMed ID: 17869005
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Olfactory and trigeminal interaction of menthol and nicotine in humans.
    Renner B; Schreiber K
    Exp Brain Res; 2012 May; 219(1):13-26. PubMed ID: 22434343
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigating the effect of gum base components on chewing gum quality and aroma release mechanism: In-vitro kinetic modeling.
    Alaçam M; Çinsar M; Gunes R; Bölük E; Atik DS; Palabiyik I
    Food Chem; 2024 Jun; 442():138486. PubMed ID: 38244442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.