These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 3193101)
1. Effects of larval nutrition on the host-seeking behavior of adult Aedes aegypti mosquitoes. Klowden MJ; Blackmer JL; Chambers GM J Am Mosq Control Assoc; 1988 Mar; 4(1):73-5. PubMed ID: 3193101 [TBL] [Abstract][Full Text] [Related]
2. Effects of larval density on the size of Aedes polynesiensis adults (Diptera: Culicidae). Mercer DR J Med Entomol; 1999 Nov; 36(6):702-8. PubMed ID: 10593069 [TBL] [Abstract][Full Text] [Related]
3. Correlation of nutritional reserves with a critical weight for pupation in larval Aedes aegypti mosquitoes. Chambers GM; Klowden MJ J Am Mosq Control Assoc; 1990 Sep; 6(3):394-9. PubMed ID: 2230767 [TBL] [Abstract][Full Text] [Related]
4. Development of Dirofilaria repens in Aedes aegypti reared in contrasting habitat. Sulaiman I Southeast Asian J Trop Med Public Health; 1983 Mar; 14(1):122-6. PubMed ID: 6612416 [TBL] [Abstract][Full Text] [Related]
5. Endogenous regulation of the attraction of Aedes aegypti mosquitoes. Klowden MJ J Am Mosq Control Assoc; 1994 Jun; 10(2 Pt 2):326-32. PubMed ID: 8965086 [TBL] [Abstract][Full Text] [Related]
6. Larval nutritional stress affects vector immune traits in adult yellow fever mosquito Aedes aegypti (Stegomyia aegypti). Telang A; Qayum AA; Parker A; Sacchetta BR; Byrnes GR Med Vet Entomol; 2012 Sep; 26(3):271-81. PubMed ID: 22112201 [TBL] [Abstract][Full Text] [Related]
7. Food as a limiting factor for Aedes aegypti in water-storage containers. Arrivillaga J; Barrera R J Vector Ecol; 2004 Jun; 29(1):11-20. PubMed ID: 15266737 [TBL] [Abstract][Full Text] [Related]
8. The size of emerging and host-seeking Aedes aegypti and the relation of size to blood-feeding success in the field. Nasci RS J Am Mosq Control Assoc; 1986 Mar; 2(1):61-2. PubMed ID: 3507471 [TBL] [Abstract][Full Text] [Related]
9. Effects of larval diets and temperature regimes on life history traits, energy reserves and temperature tolerance of male Aedes aegypti (Diptera: Culicidae): optimizing rearing techniques for the sterile insect programmes. Sasmita HI; Tu WC; Bong LJ; Neoh KB Parasit Vectors; 2019 Dec; 12(1):578. PubMed ID: 31823817 [TBL] [Abstract][Full Text] [Related]
11. Biochemical and cytoimmunological evidence for the control of Aedes aegypti larval trypsin with Aea-TMOF. Borovsky D; Meola SM Arch Insect Biochem Physiol; 2004 Mar; 55(3):124-39. PubMed ID: 14981657 [TBL] [Abstract][Full Text] [Related]
12. Larval diet, adult size, and susceptibility of Aedes aegypti (Diptera: Culicidae) to infection with Ross River virus. Nasci RS; Mitchell CJ J Med Entomol; 1994 Jan; 31(1):123-6. PubMed ID: 8158614 [TBL] [Abstract][Full Text] [Related]
13. Utilization of pre-existing energy stores of female Aedes aegypti mosquitoes during the first gonotrophic cycle. Zhou G; Pennington JE; Wells MA Insect Biochem Mol Biol; 2004 Sep; 34(9):919-25. PubMed ID: 15350611 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of Costa Rican copepods (Crustacea: Eudecapoda) for larval Aedes aegypti control with special reference to Mesocyclops thermocyclopoides. Schaper S J Am Mosq Control Assoc; 1999 Dec; 15(4):510-9. PubMed ID: 10612615 [TBL] [Abstract][Full Text] [Related]
15. Distribution and seasonality of vertically transmitted dengue viruses in Aedes mosquitoes in arid and semi-arid areas of Rajasthan, India. Angel B; Joshi V J Vector Borne Dis; 2008 Mar; 45(1):56-9. PubMed ID: 18399318 [TBL] [Abstract][Full Text] [Related]
16. Effect of female size on fecundity and survivorship of Aedes aegypti fed only human blood versus human blood plus sugar. Naksathit AT; Scott TW J Am Mosq Control Assoc; 1998 Jun; 14(2):148-52. PubMed ID: 9673914 [TBL] [Abstract][Full Text] [Related]
17. Influence of temperature and larval nutrition on the diapause inducing photoperiod of Aedes albopictus. Pumpuni CB; Knepler J; Craig GB J Am Mosq Control Assoc; 1992 Sep; 8(3):223-7. PubMed ID: 1402857 [TBL] [Abstract][Full Text] [Related]
18. Laboratory evaluation of 18 repellent compounds as oviposition deterrents of Aedes albopictus and as larvicides of Aedes aegypti, Anopheles quadrimaculatus, and Culex quinquefasciatus. Xue RD; Barnard DR; Ali A J Am Mosq Control Assoc; 2003 Dec; 19(4):397-403. PubMed ID: 14710743 [TBL] [Abstract][Full Text] [Related]
19. Host range tests with Edhazardia aedis (Microsporida: Culicosporidae) against northern Nearctic mosquitoes. Andreadis TG J Invertebr Pathol; 1994 Jul; 64(1):46-51. PubMed ID: 7914904 [TBL] [Abstract][Full Text] [Related]
20. Effect of the insect growth regulator methoprene on the ovipositional behavior of Aedes aegypti and Culex quinquefasciatus. Beehler JW; Mulla MS J Am Mosq Control Assoc; 1993 Mar; 9(1):13-6. PubMed ID: 8468569 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]