These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 31931067)
1. Hybrid films based on holistic celery nanocellulose and lignin/hemicellulose with enhanced mechanical properties and dye removal. Luo J; Huang K; Zhou X; Xu Y Int J Biol Macromol; 2020 Mar; 147():699-705. PubMed ID: 31931067 [TBL] [Abstract][Full Text] [Related]
2. Preparation of highly flexible and sustainable lignin-rich nanocellulose film containing xylonic acid (XA), and its application as an antibacterial agent. Luo J; Huang K; Zhou X; Xu Y Int J Biol Macromol; 2020 Nov; 163():1565-1571. PubMed ID: 32777427 [TBL] [Abstract][Full Text] [Related]
3. Nanocomposite films based on xylan-rich hemicelluloses and cellulose nanofibers with enhanced mechanical properties. Peng XW; Ren JL; Zhong LX; Sun RC Biomacromolecules; 2011 Sep; 12(9):3321-9. PubMed ID: 21815695 [TBL] [Abstract][Full Text] [Related]
4. PVA/(ligno)nanocellulose biocomposite films. Effect of residual lignin content on structural, mechanical, barrier and antioxidant properties. Espinosa E; Bascón-Villegas I; Rosal A; Pérez-Rodríguez F; Chinga-Carrasco G; Rodríguez A Int J Biol Macromol; 2019 Dec; 141():197-206. PubMed ID: 31479671 [TBL] [Abstract][Full Text] [Related]
5. Simultaneous extraction of lignin and cellulose nanofibrils from waste jute bags using one pot pre-treatment. Ahuja D; Kaushik A; Singh M Int J Biol Macromol; 2018 Feb; 107(Pt A):1294-1301. PubMed ID: 28964841 [TBL] [Abstract][Full Text] [Related]
6. Revalorization of selected municipal solid wastes as new precursors of "green" nanocellulose via a novel one-pot isolation system: A source perspective. Chen YW; Lee HV Int J Biol Macromol; 2018 Feb; 107(Pt A):78-92. PubMed ID: 28860064 [TBL] [Abstract][Full Text] [Related]
7. Atomic force microscopy reveals how relative humidity impacts the Young's modulus of lignocellulosic polymers and their adhesion with cellulose nanocrystals at the nanoscale. Marcuello C; Foulon L; Chabbert B; Aguié-Béghin V; Molinari M Int J Biol Macromol; 2020 Mar; 147():1064-1075. PubMed ID: 31743709 [TBL] [Abstract][Full Text] [Related]
8. Effects of hemicellulose and lignin on enzymatic hydrolysis of cellulose from dairy manure. Liao W; Wen Z; Hurley S; Liu Y; Liu C; Chen S Appl Biochem Biotechnol; 2005; 121-124():1017-30. PubMed ID: 15930578 [TBL] [Abstract][Full Text] [Related]
9. Thermally stable, enhanced water barrier, high strength starch bio-composite reinforced with lignin containing cellulose nanofibrils. Zhang CW; Nair SS; Chen H; Yan N; Farnood R; Li FY Carbohydr Polym; 2020 Feb; 230():115626. PubMed ID: 31887859 [TBL] [Abstract][Full Text] [Related]
10. Conversion of lignocellulosic biomass to nanocellulose: structure and chemical process. Lee HV; Hamid SB; Zain SK ScientificWorldJournal; 2014; 2014():631013. PubMed ID: 25247208 [TBL] [Abstract][Full Text] [Related]
11. Lignocellulosic nanofibers from triticale straw: The influence of hemicelluloses and lignin in their production and properties. Tarrés Q; Ehman NV; Vallejos ME; Area MC; Delgado-Aguilar M; Mutjé P Carbohydr Polym; 2017 May; 163():20-27. PubMed ID: 28267498 [TBL] [Abstract][Full Text] [Related]
12. Supramolecular structure of microwave treated bamboo for production of lignin-containing nanocellulose by oxalic acid dihydrate. Wang Y; Shao H; Pan H; Jiang Y; Qi J; Chen Q; Zhang S; Xiao H; Chen Y; Jia S; Huang X; Tu L; Su Z; Xie J Int J Biol Macromol; 2023 Mar; 230():123251. PubMed ID: 36639071 [TBL] [Abstract][Full Text] [Related]
13. Environmentally benign extraction of cellulose from dunchi fiber for nanocellulose fabrication. Khan MN; Rehman N; Sharif A; Ahmed E; Farooqi ZH; Din MI Int J Biol Macromol; 2020 Jun; 153():72-78. PubMed ID: 32135259 [TBL] [Abstract][Full Text] [Related]
14. Biodegradable, Flexible and Ultraviolet Blocking Nanocellulose Composite Film Incorporated with Lignin Nanoparticles. Bian H; Shu X; Su W; Luo D; Dong M; Liu X; Ji X; Dai H Int J Mol Sci; 2022 Nov; 23(23):. PubMed ID: 36499190 [TBL] [Abstract][Full Text] [Related]
15. Preparation and characterization of cellulose nanofibrils from coconut coir fibers and their reinforcements in biodegradable composite films. Wu J; Du X; Yin Z; Xu S; Xu S; Zhang Y Carbohydr Polym; 2019 May; 211():49-56. PubMed ID: 30824103 [TBL] [Abstract][Full Text] [Related]
16. Hybrid nanocellulose decorated with silver nanoparticles as reinforcing filler with antibacterial properties. Errokh A; Magnin A; Putaux JL; Boufi S Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110044. PubMed ID: 31546437 [TBL] [Abstract][Full Text] [Related]
17. Wood-Derived Materials for Green Electronics, Biological Devices, and Energy Applications. Zhu H; Luo W; Ciesielski PN; Fang Z; Zhu JY; Henriksson G; Himmel ME; Hu L Chem Rev; 2016 Aug; 116(16):9305-74. PubMed ID: 27459699 [TBL] [Abstract][Full Text] [Related]
18. Strong, Ductile, and Waterproof Cellulose Nanofibril Composite Films with Colloidal Lignin Particles. Farooq M; Zou T; Riviere G; Sipponen MH; Österberg M Biomacromolecules; 2019 Feb; 20(2):693-704. PubMed ID: 30358992 [TBL] [Abstract][Full Text] [Related]
19. Bark derived submicron-sized and nano-sized cellulose fibers: From industrial waste to high performance materials. Nair SS; Yan N Carbohydr Polym; 2015 Dec; 134():258-66. PubMed ID: 26428123 [TBL] [Abstract][Full Text] [Related]
20. Hydrothermal fractionation of woody biomass: Lignin effect on sugars recovery. Yedro FM; Cantero DA; Pascual M; García-Serna J; Cocero MJ Bioresour Technol; 2015 Sep; 191():124-32. PubMed ID: 25985415 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]