These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 31931188)

  • 21. Nickel oxide and carbon nanotube composite (NiO/CNT) as a novel cathode non-precious metal catalyst in microbial fuel cells.
    Huang J; Zhu N; Yang T; Zhang T; Wu P; Dang Z
    Biosens Bioelectron; 2015 Oct; 72():332-9. PubMed ID: 26002018
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Diversity of chromium-resistant and -reducing bacteria in a chromium-contaminated activated sludge.
    Francisco R; Alpoim MC; Morais PV
    J Appl Microbiol; 2002; 92(5):837-43. PubMed ID: 11972686
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reduction of hexavalent chromium by Sphaerotilus natans a filamentous micro-organism present in activated sludges.
    Caravelli AH; Giannuzzi L; Zaritzky NE
    J Hazard Mater; 2008 Aug; 156(1-3):214-22. PubMed ID: 18215460
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Simultaneous Cr(VI) reduction and electricity generation in Plant-Sediment Microbial Fuel Cells (P-SMFCs): Synthesis of non-bonding Co
    Cheng C; Hu Y; Shao S; Yu J; Zhou W; Cheng J; Chen Y; Chen S; Chen J; Zhang L
    Environ Pollut; 2019 Apr; 247():647-657. PubMed ID: 30711820
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electrophoretic deposition of carbon nanotube on reticulated vitreous carbon for hexavalent chromium removal in a biocathode microbial fuel cell.
    Fei K; Song TS; Wang H; Zhang D; Tao R; Xie J
    R Soc Open Sci; 2017 Oct; 4(10):170798. PubMed ID: 29134084
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reduction and precipitation of chromate by mixed culture sulphate-reducing bacterial biofilms.
    Smith WL; Gadd GM
    J Appl Microbiol; 2000 Jun; 88(6):983-91. PubMed ID: 10849174
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of acclimatization on hexavalent chromium reduction in a biocathode microbial fuel cell.
    Wu X; Zhu X; Song T; Zhang L; Jia H; Wei P
    Bioresour Technol; 2015 Mar; 180():185-91. PubMed ID: 25603528
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Removal of hexavalent chromium by biochar supported nZVI composite: Batch and fixed-bed column evaluations, mechanisms, and secondary contamination prevention.
    Fan Z; Zhang Q; Gao B; Li M; Liu C; Qiu Y
    Chemosphere; 2019 Feb; 217():85-94. PubMed ID: 30414546
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synthesis and characterization of iron-nitrogen-doped biochar catalysts for organic pollutant removal and hexavalent chromium reduction.
    Yao Y; Liu X; Hu H; Tang Y; Hu H; Ma Z; Wang S
    J Colloid Interface Sci; 2022 Mar; 610():334-346. PubMed ID: 34923271
    [TBL] [Abstract][Full Text] [Related]  

  • 30. One stone two birds: novel carbon nanotube/Bi
    Zhang X; Shi D; Fan J
    Environ Sci Pollut Res Int; 2017 Oct; 24(29):23309-23320. PubMed ID: 28836094
    [TBL] [Abstract][Full Text] [Related]  

  • 31. UV modification of biochar for enhanced hexavalent chromium removal from aqueous solution.
    Peng Z; Zhao H; Lyu H; Wang L; Huang H; Nan Q; Tang J
    Environ Sci Pollut Res Int; 2018 Apr; 25(11):10808-10819. PubMed ID: 29396828
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A novel biochar supported CMC stabilized nano zero-valent iron composite for hexavalent chromium removal from water.
    Zhang S; Lyu H; Tang J; Song B; Zhen M; Liu X
    Chemosphere; 2019 Feb; 217():686-694. PubMed ID: 30448748
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhanced Cr(VI) reduction in biocathode microbial electrolysis cell using Fenton-derived ferric sludge.
    Ma L; Chen N; Feng C; Yao Y; Wang S; Wang G; Su Y; Zhang Y
    Water Res; 2022 Apr; 212():118144. PubMed ID: 35124562
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molasses as an efficient low-cost carbon source for biological Cr(VI) removal.
    Michailides MK; Tekerlekopoulou AG; Akratos CS; Coles S; Pavlou S; Vayenas DV
    J Hazard Mater; 2015 Jan; 281():95-105. PubMed ID: 25160055
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inhibition of the nitrification process in activated sludge by trivalent and hexavalent chromium, and partitioning of hexavalent chromium between sludge compartments.
    Novotnik B; Zuliani T; Ščančar J; Milačič R
    Chemosphere; 2014 Jun; 105():87-94. PubMed ID: 24462082
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nano nickel embedded in N-doped CNTs-supported porous biochar for adsorption-reduction of hexavalent chromium.
    Zhu D; Shao J; Li Z; Yang H; Zhang S; Chen H
    J Hazard Mater; 2021 Aug; 416():125693. PubMed ID: 33819644
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Preparation of Zn-Doped Biochar from Sewage Sludge for Chromium Ion Removal.
    Nguyen NT; Lee SY; Chen SS; Nguyen NC; Chang CT; Hsiao SS; Trang LT; Kao CY; Lin MF; Wang L
    J Nanosci Nanotechnol; 2018 Aug; 18(8):5520-5527. PubMed ID: 29458605
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development of high performance of Co/Fe/N/CNT nanocatalyst for oxygen reduction in microbial fuel cells.
    Deng L; Zhou M; Liu C; Liu L; Liu C; Dong S
    Talanta; 2010 Apr; 81(1-2):444-8. PubMed ID: 20188944
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hexavalent chromium reduction through redox electrolytic cell with urea and cow urine as anolyte.
    Sriram S; Nambi IM; Chetty R
    J Environ Manage; 2019 Feb; 232():554-563. PubMed ID: 30508775
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hierarchically Porous N-Doped Carbon Nanotubes/Reduced Graphene Oxide Composite for Promoting Flavin-Based Interfacial Electron Transfer in Microbial Fuel Cells.
    Wu X; Qiao Y; Shi Z; Tang W; Li CM
    ACS Appl Mater Interfaces; 2018 Apr; 10(14):11671-11677. PubMed ID: 29557635
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.