These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 31931310)

  • 1. Formation of haloacetic acids from different organic precursors in swimming pool water during chlorination.
    Wang J; Gong T; Xian Q
    Chemosphere; 2020 May; 247():125793. PubMed ID: 31931310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Examining the interrelationship between DOC, bromide and chlorine dose on DBP formation in drinking water--a case study.
    Bond T; Huang J; Graham NJ; Templeton MR
    Sci Total Environ; 2014 Feb; 470-471():469-79. PubMed ID: 24176694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation, distribution, and speciation of DBPs (THMs, HAAs, ClO
    Padhi RK; Subramanian S; Satpathy KK
    Chemosphere; 2019 Mar; 218():540-550. PubMed ID: 30500715
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation and speciation of nine haloacetamides, an emerging class of nitrogenous DBPs, during chlorination or chloramination.
    Chu W; Gao N; Yin D; Krasner SW
    J Hazard Mater; 2013 Sep; 260():806-12. PubMed ID: 23856310
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of disinfection byproducts (DBPs) by ozonation and peroxone process: Role of chloride on removal of DBP precursors.
    Deeudomwongsa P; Phattarapattamawong S; Andrew Lin KY
    Chemosphere; 2017 Oct; 184():1215-1222. PubMed ID: 28672704
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bench-scale assessment of the formation and control of disinfection byproducts from human endogenous organic precursors in swimming pools.
    Liu Y; Chen CY; Wang GS
    Chemosphere; 2019 Jun; 224():607-615. PubMed ID: 30844592
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation characteristics of disinfection byproducts from four different algal organic matter during chlorination and chloramination.
    Zhai H; Cheng S; Zhang L; Luo W; Zhou Y
    Chemosphere; 2022 Dec; 308(Pt 1):136171. PubMed ID: 36037959
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of regulated and unregulated disinfection byproducts during chlorination of algal organic matter extracted from freshwater and marine algae.
    Liu C; Ersan MS; Plewa MJ; Amy G; Karanfil T
    Water Res; 2018 Oct; 142():313-324. PubMed ID: 29890479
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Occurrence, origin, and toxicity of disinfection byproducts in chlorinated swimming pools: An overview.
    Manasfi T; Coulomb B; Boudenne JL
    Int J Hyg Environ Health; 2017 May; 220(3):591-603. PubMed ID: 28174041
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of metal ions on disinfection byproduct formation during chlorination of natural organic matter and surrogates.
    Zhao Y; Yang HW; Liu ST; Tang S; Wang XM; Xie YF
    Chemosphere; 2016 Feb; 144():1074-82. PubMed ID: 26454116
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of bromide and iodide ions on the formation of disinfection by-products during ozonation and subsequent chlorination of water containing biological source matters.
    Zha XS; Liu Y; Liu X; Zhang Q; Dai RH; Ying LW; Wu J; Wang JT; Ma L
    Environ Sci Pollut Res Int; 2014 Feb; 21(4):2714-23. PubMed ID: 24122265
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activated carbon and organic matter characteristics impact the adsorption of DBP precursors when chlorine is added prior to GAC contactors.
    Erdem CU; Ateia M; Liu C; Karanfil T
    Water Res; 2020 Oct; 184():116146. PubMed ID: 32726742
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of DBPs formation from SMPs exposed to chlorine, chloramine and ozone.
    Zhang B; Xian Q; Lu J; Gong T; Li A; Feng J
    J Water Health; 2017 Apr; 15(2):185-195. PubMed ID: 28362300
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Do DBPs swim in salt water pools? Comparison of 60 DBPs formed by electrochemically generated chlorine vs. conventional chlorine.
    Granger CO; Richardson SD
    J Environ Sci (China); 2022 Jul; 117():232-241. PubMed ID: 35725075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correlation between SUVA and DBP formation during chlorination and chloramination of NOM fractions from different sources.
    Hua G; Reckhow DA; Abusallout I
    Chemosphere; 2015 Jul; 130():82-9. PubMed ID: 25862949
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting bromide incorporation in a chlorinated indoor swimming pool.
    Chowdhury S; Mazumder AJ; Husain T
    Environ Sci Pollut Res Int; 2016 Jun; 23(12):12174-84. PubMed ID: 26971516
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The haloacetic acid leap in effluent of a biologically active carbon filter experiencing a disinfectant switch.
    Wang W; Xie YF; Tang HL
    Chemosphere; 2020 Apr; 244():125435. PubMed ID: 31812063
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of UV irradiation on Chlorella sp. damage and disinfection byproducts formation during subsequent chlorination of algal organic matter.
    Dong F; Lin Q; Deng J; Zhang T; Li C; Zai X
    Sci Total Environ; 2019 Jun; 671():519-527. PubMed ID: 30933807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of alum coagulation on speciation and distribution of trihalomethanes (THMs) and haloacetic acids (HAAs).
    Gang D; Clevenger TE; Banerji SK
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2005; 40(3):521-34. PubMed ID: 15756964
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization and chlorine reactivity of particulate matter released by bathers in indoor swimming pools.
    Maréchal M; Correc O; Demelas C; Couzinet A; Cimetière N; Vassalo L; Gérardin F; Boudenne JL
    Chemosphere; 2023 Feb; 313():137589. PubMed ID: 36566788
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.