These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 31931479)

  • 1. Chattering
    Karsaz A
    IET Syst Biol; 2020 Feb; 14(1):31-38. PubMed ID: 31931479
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Postprandial fuzzy adaptive strategy for a hybrid proportional derivative controller for the artificial pancreas.
    Beneyto A; Vehi J
    Med Biol Eng Comput; 2018 Nov; 56(11):1973-1986. PubMed ID: 29725915
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance Analysis of Fuzzy-PID Controller for Blood Glucose Regulation in Type-1 Diabetic Patients.
    Yadav J; Rani A; Singh V
    J Med Syst; 2016 Dec; 40(12):254. PubMed ID: 27714563
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A PI-fuzzy logic controller for the regulation of blood glucose level in diabetic patients.
    Ibbini M
    J Med Eng Technol; 2006; 30(2):83-92. PubMed ID: 16531347
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Natural occurrence of nocturnal hypoglycemia detection using hybrid particle swarm optimized fuzzy reasoning model.
    Ling SH; Nguyen HT
    Artif Intell Med; 2012 Jul; 55(3):177-84. PubMed ID: 22698854
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive fuzzy integral sliding mode control of blood glucose level in patients with type 1 diabetes: In silico studies.
    Asadi S; Nekoukar V
    Math Biosci; 2018 Nov; 305():122-132. PubMed ID: 30201283
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proposed clinical application for tuning fuzzy logic controller of artificial pancreas utilizing a personalization factor.
    Mauseth R; Wang Y; Dassau E; Kircher R; Matheson D; Zisser H; Jovanovic L; Doyle FJ
    J Diabetes Sci Technol; 2010 Jul; 4(4):913-22. PubMed ID: 20663457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing automatic closed-loop glucose control in type 1 diabetes with an adaptive meal bolus calculator - in silico evaluation under intra-day variability.
    Herrero P; Bondia J; Adewuyi O; Pesl P; El-Sharkawy M; Reddy M; Toumazou C; Oliver N; Georgiou P
    Comput Methods Programs Biomed; 2017 Jul; 146():125-131. PubMed ID: 28688482
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel blood glucose regulation using TSK0-FCMAC: a fuzzy CMAC based on the zero-ordered TSK fuzzy inference scheme.
    Ting CW; Quek C
    IEEE Trans Neural Netw; 2009 May; 20(5):856-71. PubMed ID: 19304482
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes.
    Woldaregay AZ; Årsand E; Walderhaug S; Albers D; Mamykina L; Botsis T; Hartvigsen G
    Artif Intell Med; 2019 Jul; 98():109-134. PubMed ID: 31383477
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stress Testing of an Artificial Pancreas System With Pizza and Exercise Leads to Improvements in the System's Fuzzy Logic Controller.
    Mauseth R; Lord SM; Hirsch IB; Kircher RC; Matheson DP; Greenbaum CJ
    J Diabetes Sci Technol; 2015 Sep; 9(6):1253-9. PubMed ID: 26370244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A fuzzy logic based closed-loop control system for blood glucose level regulation in diabetics.
    Ibbini MS; Masadeh MA
    J Med Eng Technol; 2005; 29(2):64-9. PubMed ID: 15804854
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An optimal interval type-2 fuzzy logic control based closed-loop drug administration to regulate the mean arterial blood pressure.
    Sharma R; Deepak KK; Gaur P; Joshi D
    Comput Methods Programs Biomed; 2020 Mar; 185():105167. PubMed ID: 31715333
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated hybrid closed-loop control with a proportional-integral-derivative based system in adolescents and adults with type 1 diabetes: individualizing settings for optimal performance.
    Ly TT; Weinzimer SA; Maahs DM; Sherr JL; Roy A; Grosman B; Cantwell M; Kurtz N; Carria L; Messer L; von Eyben R; Buckingham BA
    Pediatr Diabetes; 2017 Aug; 18(5):348-355. PubMed ID: 27191182
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The control of blood glucose in the critical diabetic patient: a neuro-fuzzy method.
    Dazzi D; Taddei F; Gavarini A; Uggeri E; Negro R; Pezzarossa A
    J Diabetes Complications; 2001; 15(2):80-7. PubMed ID: 11274904
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Blood glucose concentration control for type 1 diabetic patients: a multiple-model strategy.
    Batmani Y; Khodakaramzadeh S
    IET Syst Biol; 2020 Feb; 14(1):24-30. PubMed ID: 31931478
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Economic Model Predictive Control of Bihormonal Artificial Pancreas System Based on Switching Control and Dynamic R-parameter.
    Tang F; Wang Y
    J Diabetes Sci Technol; 2017 Nov; 11(6):1112-1123. PubMed ID: 28728434
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fuzzy-based controller for glucose regulation in type-1 diabetic patients by subcutaneous route.
    Campos-Delgado DU; Hernández-Ordoñez M; Femat R; Gordillo-Moscoso A
    IEEE Trans Biomed Eng; 2006 Nov; 53(11):2201-10. PubMed ID: 17073325
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Treatment for T1DM patients by a neuro-fuzzy inverse optimal controller including multi-step prediction.
    Rios YY; García-Rodríguez JA; Sanchez EN; Alanis AY; Ruiz-Velázquez E; Pardo Garcia A
    ISA Trans; 2022 Jul; 126():203-212. PubMed ID: 34446285
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The "Glucositter" overnight automated closed loop system for type 1 diabetes: a randomized crossover trial.
    Nimri R; Danne T; Kordonouri O; Atlas E; Bratina N; Biester T; Avbelj M; Miller S; Muller I; Phillip M; Battelino T
    Pediatr Diabetes; 2013 May; 14(3):159-67. PubMed ID: 23448393
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.