These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

397 related articles for article (PubMed ID: 31931714)

  • 21. New insights into the evolution and functional divergence of the CIPK gene family in Saccharum.
    Su W; Ren Y; Wang D; Huang L; Fu X; Ling H; Su Y; Huang N; Tang H; Xu L; Que Y
    BMC Genomics; 2020 Dec; 21(1):868. PubMed ID: 33287700
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Uneven HAK/KUP/KT Protein Diversity Among Angiosperms: Species Distribution and Perspectives.
    Nieves-Cordones M; Ródenas R; Chavanieu A; Rivero RM; Martinez V; Gaillard I; Rubio F
    Front Plant Sci; 2016; 7():127. PubMed ID: 26904084
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transcriptome-wide identification and expression analysis of the KT/HAK/KUP family in
    Wei J; Tiika RJ; Cui G; Ma Y; Yang H; Duan H
    PeerJ; 2022; 10():e12989. PubMed ID: 35261820
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genome-wide characterization and expression analysis of HAK K
    Jin R; Jiang W; Yan M; Zhang A; Liu M; Zhao P; Chen X; Tang Z
    3 Biotech; 2021 Jan; 11(1):3. PubMed ID: 33269187
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparative phylogenetic analysis of CBL reveals the gene family evolution and functional divergence in Saccharum spontaneum.
    Feng X; Wang Y; Zhang N; Gao S; Wu J; Liu R; Huang Y; Zhang J; Qi Y
    BMC Plant Biol; 2021 Aug; 21(1):395. PubMed ID: 34425748
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular evolution and functional divergence of HAK potassium transporter gene family in rice (Oryza sativa L.).
    Yang Z; Gao Q; Sun C; Li W; Gu S; Xu C
    J Genet Genomics; 2009 Mar; 36(3):161-72. PubMed ID: 19302972
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genome-wide identification and expression analysis of the HAK/KUP/KT gene family in Moso bamboo.
    Guo H; Tan J; Jiao Y; Huang B; Ma R; Ramakrishnan M; Qi G; Zhang Z
    Front Plant Sci; 2024; 15():1331710. PubMed ID: 38595761
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rice OsHAK16 functions in potassium uptake and translocation in shoot, maintaining potassium homeostasis and salt tolerance.
    Feng H; Tang Q; Cai J; Xu B; Xu G; Yu L
    Planta; 2019 Aug; 250(2):549-561. PubMed ID: 31119363
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inventory and functional characterization of the HAK potassium transporters of rice.
    Bañuelos MA; Garciadeblas B; Cubero B; Rodríguez-Navarro A
    Plant Physiol; 2002 Oct; 130(2):784-95. PubMed ID: 12376644
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genome-wide analysis of potassium transport genes in Gossypium raimondii suggest a role of GrHAK/KUP/KT8, GrAKT2.1 and GrAKT1.1 in response to abiotic stress.
    Azeem F; Zameer R; Rehman Rashid MA; Rasul I; Ul-Allah S; Siddique MH; Fiaz S; Raza A; Younas A; Rasool A; Ali MA; Anwar S; Siddiqui MH
    Plant Physiol Biochem; 2022 Jan; 170():110-122. PubMed ID: 34864561
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rice potassium transporter OsHAK1 is essential for maintaining potassium-mediated growth and functions in salt tolerance over low and high potassium concentration ranges.
    Chen G; Hu Q; Luo L; Yang T; Zhang S; Hu Y; Yu L; Xu G
    Plant Cell Environ; 2015 Dec; 38(12):2747-65. PubMed ID: 26046301
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genome-wide analysis of the HAK potassium transporter gene family reveals asymmetrical evolution in tobacco (
    Song Z; Wu X; Gao Y; Cui X; Jiao F; Chen X; Li Y
    Genome; 2019 Apr; 62(4):267-278. PubMed ID: 30865850
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Contribution of KUPs to potassium and cesium accumulation appears complementary in Arabidopsis.
    Adams E; Miyazaki T; Shin R
    Plant Signal Behav; 2019; 14(1):1554468. PubMed ID: 30540522
    [TBL] [Abstract][Full Text] [Related]  

  • 34. KT-HAK-KUP transporters in major terrestrial photosynthetic organisms: A twenty years tale.
    Santa-María GE; Oliferuk S; Moriconi JI
    J Plant Physiol; 2018 Jul; 226():77-90. PubMed ID: 29704646
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of HAK protein family in
    Wang Y; Zhang Y; Wei Y; Meng J; Zhong C; Fan C
    Front Plant Sci; 2022; 13():1084337. PubMed ID: 36816483
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Potassium transporters in plants--involvement in K+ acquisition, redistribution and homeostasis.
    Gierth M; Mäser P
    FEBS Lett; 2007 May; 581(12):2348-56. PubMed ID: 17397836
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structure, phylogeny, allelic haplotypes and expression of sucrose transporter gene families in Saccharum.
    Zhang Q; Hu W; Zhu F; Wang L; Yu Q; Ming R; Zhang J
    BMC Genomics; 2016 Feb; 17():88. PubMed ID: 26830680
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Expression of KT/KUP genes in Arabidopsis and the role of root hairs in K+ uptake.
    Ahn SJ; Shin R; Schachtman DP
    Plant Physiol; 2004 Mar; 134(3):1135-45. PubMed ID: 14988478
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rice sodium-insensitive potassium transporter, OsHAK5, confers increased salt tolerance in tobacco BY2 cells.
    Horie T; Sugawara M; Okada T; Taira K; Kaothien-Nakayama P; Katsuhara M; Shinmyo A; Nakayama H
    J Biosci Bioeng; 2011 Mar; 111(3):346-56. PubMed ID: 21084222
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genome-Wide Identification and Expression Profile Analysis of WRKY Family Genes in the Autopolyploid Saccharum spontaneum.
    Li Z; Hua X; Zhong W; Yuan Y; Wang Y; Wang Z; Ming R; Zhang J
    Plant Cell Physiol; 2020 Mar; 61(3):616-630. PubMed ID: 31830269
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.