These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
241 related articles for article (PubMed ID: 31931716)
1. Comparative transcriptomic and metabolic analysis of wild and domesticated wheat genotypes reveals differences in chemical and physical defense responses against aphids. Batyrshina ZS; Yaakov B; Shavit R; Singh A; Tzin V BMC Plant Biol; 2020 Jan; 20(1):19. PubMed ID: 31931716 [TBL] [Abstract][Full Text] [Related]
2. The Effectiveness of Physical and Chemical Defense Responses of Wild Emmer Wheat Against Aphids Depends on Leaf Position and Genotype. Singh A; Dilkes B; Sela H; Tzin V Front Plant Sci; 2021; 12():667820. PubMed ID: 34262579 [TBL] [Abstract][Full Text] [Related]
3. Exploring the metabolic variation between domesticated and wild tetraploid wheat genotypes in response to corn leaf aphid infestation. Chandrasekhar K; Shavit R; Distelfeld A; Christensen SA; Tzin V Plant Signal Behav; 2018; 13(6):e1486148. PubMed ID: 29944455 [TBL] [Abstract][Full Text] [Related]
4. Cereal aphids differently affect benzoxazinoid levels in durum wheat. Shavit R; Batyrshina ZS; Dotan N; Tzin V PLoS One; 2018; 13(12):e0208103. PubMed ID: 30507950 [TBL] [Abstract][Full Text] [Related]
5. The wheat dioxygenase BX6 is involved in the formation of benzoxazinoids in planta and contributes to plant defense against insect herbivores. Shavit R; Batyrshina ZS; Yaakov B; Florean M; Köllner TG; Tzin V Plant Sci; 2022 Mar; 316():111171. PubMed ID: 35151455 [TBL] [Abstract][Full Text] [Related]
6. The combined impacts of wheat spatial position and phenology on cereal aphid abundance. Batyrshina ZS; Cna'ani A; Rozenberg T; Seifan M; Tzin V PeerJ; 2020; 8():e9142. PubMed ID: 32518724 [TBL] [Abstract][Full Text] [Related]
7. The transcription factor TaMYB31 regulates the benzoxazinoid biosynthetic pathway in wheat. Batyrshina ZS; Shavit R; Yaakov B; Bocobza S; Tzin V J Exp Bot; 2022 Sep; 73(16):5634-5649. PubMed ID: 35554544 [TBL] [Abstract][Full Text] [Related]
9. Changes in "natural antibiotic" metabolite composition during tetraploid wheat domestication. Ben-Abu Y; Itsko M Sci Rep; 2021 Oct; 11(1):20340. PubMed ID: 34645851 [TBL] [Abstract][Full Text] [Related]
10. Comparative Analysis Based on Transcriptomics and Metabolomics Data Reveal Differences between Emmer and Durum Wheat in Response to Nitrogen Starvation. Beleggia R; Omranian N; Holtz Y; Gioia T; Fiorani F; Nigro FM; Pecchioni N; De Vita P; Schurr U; David JL; Nikoloski Z; Papa R Int J Mol Sci; 2021 Apr; 22(9):. PubMed ID: 33946478 [TBL] [Abstract][Full Text] [Related]
11. Direct and Knock-on Effects of Water Stress on the Nutrient Contents of Triticum aestivum (Poales: Poaceae) and Population Growth of Rhopalosiphum padi (Hemiptera: Aphididae). Lin YY; Liu WC; Hsu YT; Hsu CH; Hu CC; Saska P; Skuhrovec J; Tuan SJ J Econ Entomol; 2021 Aug; 114(4):1496-1508. PubMed ID: 33885757 [TBL] [Abstract][Full Text] [Related]
12. Reciprocal Hosts' Responses to Powdery Mildew Isolates Originating from Domesticated Wheats and Their Wild Progenitor. Ben-David R; Dinoor A; Peleg Z; Fahima T Front Plant Sci; 2018; 9():75. PubMed ID: 29527213 [TBL] [Abstract][Full Text] [Related]
13. Transcriptomic response to nitrogen availability reveals signatures of adaptive plasticity during tetraploid wheat domestication. Pieri A; Beleggia R; Gioia T; Tong H; Di Vittori V; Frascarelli G; Bitocchi E; Nanni L; Bellucci E; Fiorani F; Pecchioni N; Marzario S; De Quattro C; Limongi AR; De Vita P; Rossato M; Schurr U; David JL; Nikoloski Z; Papa R Plant Cell; 2024 Sep; 36(9):3809-3823. PubMed ID: 39056474 [TBL] [Abstract][Full Text] [Related]
14. A 3,000-year-old Egyptian emmer wheat genome reveals dispersal and domestication history. Scott MF; Botigué LR; Brace S; Stevens CJ; Mullin VE; Stevenson A; Thomas MG; Fuller DQ; Mott R Nat Plants; 2019 Nov; 5(11):1120-1128. PubMed ID: 31685951 [TBL] [Abstract][Full Text] [Related]
15. Transcriptome analysis reveals rapid defence responses in wheat induced by phytotoxic aphid Schizaphis graminum feeding. Zhang Y; Fu Y; Wang Q; Liu X; Li Q; Chen J BMC Genomics; 2020 May; 21(1):339. PubMed ID: 32366323 [TBL] [Abstract][Full Text] [Related]
16. The structure of wild and domesticated emmer wheat populations, gene flow between them, and the site of emmer domestication. Luo MC; Yang ZL; You FM; Kawahara T; Waines JG; Dvorak J Theor Appl Genet; 2007 Apr; 114(6):947-59. PubMed ID: 17318496 [TBL] [Abstract][Full Text] [Related]
17. Transcriptome profiling of wheat glumes in wild emmer, hulled landraces and modern cultivars. Zou H; Tzarfati R; Hübner S; Krugman T; Fahima T; Abbo S; Saranga Y; Korol AB BMC Genomics; 2015 Oct; 16():777. PubMed ID: 26462652 [TBL] [Abstract][Full Text] [Related]
18. Patterns of resistance to three cereal aphids among wheats in the genus Triticum (Poaceae). Lamb RJ; Migui SM; Lamb RJ Bull Entomol Res; 2003 Aug; 93(4):323-33. PubMed ID: 12908918 [TBL] [Abstract][Full Text] [Related]
19. Multiregional origins of the domesticated tetraploid wheats. Oliveira HR; Jacocks L; Czajkowska BI; Kennedy SL; Brown TA PLoS One; 2020; 15(1):e0227148. PubMed ID: 31968001 [TBL] [Abstract][Full Text] [Related]
20. Prevalence and management of aphids (Hemiptera: Aphididae) in different wheat genotypes and their impact on yield and related traits. Hafeez F; Abbas M; Zia K; Ali S; Farooq M; Arshad M; Iftikhar A; Saleem MJ; Zuan ATK; Li Y; Nasif O; Alharbi SA; Wainwright M; Ansari MJ PLoS One; 2021; 16(10):e0257952. PubMed ID: 34644343 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]