BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 3193176)

  • 1. Correlated electrophysiology and morphology of the ependyma in rat hypothalamus.
    Jarvis CR; Andrew RD
    J Neurosci; 1988 Oct; 8(10):3691-702. PubMed ID: 3193176
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The distribution of orthogonal arrays in the freeze-fractured rat median eminence.
    Hatton JD; Ellisman MH
    J Neurocytol; 1982 Apr; 11(2):335-49. PubMed ID: 6279786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrophysiological properties of ependymal cells (radial glia) in dorsal cortex of the turtle, Pseudemys scripta.
    Connors BW; Ransom BR
    J Physiol; 1987 Apr; 385():287-306. PubMed ID: 3116210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The freeze-fractured median eminence. I. Development of intercellular junctions in the ependyma of the 3rd ventricle of the rat.
    Monroe BG; Holmes EM
    Cell Tissue Res; 1982; 222(2):389-408. PubMed ID: 7083308
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elevated expression of glucose transporter-1 in hypothalamic ependymal cells not involved in the formation of the brain-cerebrospinal fluid barrier.
    Garcia MA; Carrasco M; Godoy A; Reinicke K; Montecinos VP; Aguayo LG; Tapia JC; Vera JC; Nualart F
    J Cell Biochem; 2001; 80(4):491-503. PubMed ID: 11169733
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DARPP-32, a dopamine- and cyclic AMP-regulated phosphoprotein in tanycytes of the mediobasal hypothalamus: distribution and relation to dopamine and luteinizing hormone-releasing hormone neurons and other glial elements.
    Meister B; Hökfelt T; Tsuruo Y; Hemmings H; Ouimet C; Greengard P; Goldstein M
    Neuroscience; 1988 Nov; 27(2):607-22. PubMed ID: 2905789
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gap junctional intercellular communication between cultured ependymal cells, revealed by lucifer yellow CH transfer and freeze-fracture.
    Bouillé C; Mesnil M; Barriere H; Gabrion J
    Glia; 1991; 4(1):25-36. PubMed ID: 1828784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dye transfer through gap junctions between neuroendocrine cells of rat hypothalamus.
    Andrew RD; MacVicar BA; Dudek FE; Hatton GI
    Science; 1981 Mar; 211(4487):1187-9. PubMed ID: 7466393
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Early postnatal development of ependyma in the third ventricle of male and female rats.
    Walsh RJ; Brawer JR; Lin PL
    Am J Anat; 1978 Mar; 151(3):377-407. PubMed ID: 645609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Localization of connexin 43 gap junctions and hemichannels in tanycytes of adult mice.
    Szilvásy-Szabó A; Varga E; Beliczai Z; Lechan RM; Fekete C
    Brain Res; 2017 Oct; 1673():64-71. PubMed ID: 28803831
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A simple strategy for culturing morphologically-conserved rat hypothalamic tanycytes.
    De Francesco PN; Castrogiovanni D; Uriarte M; Frassa V; Agosti F; Raingo J; Perello M
    Cell Tissue Res; 2017 Aug; 369(2):369-380. PubMed ID: 28413862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estrogen receptor-immunoreactive glia, endothelia, and ependyma in guinea pig preoptic area and median eminence: electron microscopy.
    Langub MC; Watson RE
    Endocrinology; 1992 Jan; 130(1):364-72. PubMed ID: 1727710
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spinal tanycytes in the adult rat: a correlative Golgi gold-toning study.
    Rafols JA; Goshgarian HG
    Anat Rec; 1985 Jan; 211(1):75-86. PubMed ID: 3985381
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ependymal and choroidal cells in culture: characterization and functional differentiation.
    Gabrion JB; Herbuté S; Bouillé C; Maurel D; Kuchler-Bopp S; Laabich A; Delaunoy JP
    Microsc Res Tech; 1998 Apr; 41(2):124-57. PubMed ID: 9579599
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Comparative scanning and transmission electron microscopy studies of the ependyma of the central canal in the spinal cord of primates. I. Electron optical image of the ependyma in the central canal of the spinal cord of the callithrix monkey (Callithrix jacchus, Linné 1758)].
    Erhardt H; Meinel W
    Gegenbaurs Morphol Jahrb; 1986; 132(4):535-54. PubMed ID: 3098621
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Morphological aspects of the hypothalamic-hypophyseal system. VI. The tanycytes: their relation to the sexual differentiation of the hypothalamus. An enzyme-histochemical study.
    Akmayev IG; Fidelina OV
    Cell Tissue Res; 1976 Oct; 173(3):407-16. PubMed ID: 991250
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gap junctions in goldfish preoptic ependyma: regional variation in cellular differentiation.
    Gregory WA; Bennett MV
    Brain Res; 1988 Aug; 470(2):205-16. PubMed ID: 3219581
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fine structure of neurons of the arcuate nucleus and median eminence of the hypothalamus of the golden hamster following immobilization.
    Gross JH; Knigge KM; Sheridan MN
    Cell Tissue Res; 1976 May; 168(3):385-97. PubMed ID: 1277275
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential distribution of the glutamate transporters GLT-1 and GLAST in tanycytes of the third ventricle.
    Berger UV; Hediger MA
    J Comp Neurol; 2001 Apr; 433(1):101-14. PubMed ID: 11283952
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ependyma of the central canal of the rat spinal cord: a light and transmission electron microscopic study.
    Bruni JE; Reddy K
    J Anat; 1987 Jun; 152():55-70. PubMed ID: 3654376
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.