These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 31931825)

  • 1. Effects of bodyweight support and guidance force on muscle activation during Locomat walking in people with stroke: a cross-sectional study.
    Lin J; Hu G; Ran J; Chen L; Zhang X; Zhang Y
    J Neuroeng Rehabil; 2020 Jan; 17(1):5. PubMed ID: 31931825
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lokomat guided gait in hemiparetic stroke patients: the effects of training parameters on muscle activity and temporal symmetry.
    van Kammen K; Boonstra AM; van der Woude LHV; Visscher C; Reinders-Messelink HA; den Otter R
    Disabil Rehabil; 2020 Oct; 42(21):2977-2985. PubMed ID: 30973764
    [No Abstract]   [Full Text] [Related]  

  • 3. Differences in muscle activity and temporal step parameters between Lokomat guided walking and treadmill walking in post-stroke hemiparetic patients and healthy walkers.
    van Kammen K; Boonstra AM; van der Woude LHV; Reinders-Messelink HA; den Otter R
    J Neuroeng Rehabil; 2017 Apr; 14(1):32. PubMed ID: 28427422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The combined effects of guidance force, bodyweight support and gait speed on muscle activity during able-bodied walking in the Lokomat.
    van Kammen K; Boonstra AM; van der Woude LH; Reinders-Messelink HA; den Otter R
    Clin Biomech (Bristol, Avon); 2016 Jul; 36():65-73. PubMed ID: 27214248
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of Pelvic Corrective Force With Visual Feedback Improves Paretic Leg Muscle Activities and Gait Performance After Stroke.
    Hsu CJ; Kim J; Roth EJ; Rymer WZ; Wu M
    IEEE Trans Neural Syst Rehabil Eng; 2019 Dec; 27(12):2353-2360. PubMed ID: 31675335
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Leg surface electromyography patterns in children with neuro-orthopedic disorders walking on a treadmill unassisted and assisted by a robot with and without encouragement.
    Aurich Schuler T; Müller R; van Hedel HJ
    J Neuroeng Rehabil; 2013 Jul; 10():78. PubMed ID: 23867005
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of asymmetrical support on lower limb muscle activity during Lokomat guided gait in persons with a chronic stroke: an explorative study.
    Minkes-Weiland S; Reinders-Messelink HA; Boonstra AM; van der Woude LH; den Otter R
    Eur J Phys Rehabil Med; 2022 Oct; 58(5):693-700. PubMed ID: 36102326
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recovery of gait after stroke: what changes?
    Buurke JH; Nene AV; Kwakkel G; Erren-Wolters V; Ijzerman MJ; Hermens HJ
    Neurorehabil Neural Repair; 2008; 22(6):676-83. PubMed ID: 18971383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amplitude and stride-to-stride variability of muscle activity during Lokomat guided walking and treadmill walking in children with cerebral palsy.
    van Kammen K; Reinders-Messelink HA; Elsinghorst AL; Wesselink CF; Meeuwisse-de Vries B; van der Woude LHV; Boonstra AM; den Otter R
    Eur J Paediatr Neurol; 2020 Nov; 29():108-117. PubMed ID: 32900595
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The combined effects of body weight support and gait speed on gait related muscle activity: a comparison between walking in the Lokomat exoskeleton and regular treadmill walking.
    Van Kammen K; Boonstra A; Reinders-Messelink H; den Otter R
    PLoS One; 2014; 9(9):e107323. PubMed ID: 25226302
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immediate kinematic and muscle activity changes after a single robotic exoskeleton walking session post-stroke.
    Swank C; Almutairi S; Wang-Price S; Gao F
    Top Stroke Rehabil; 2020 Oct; 27(7):503-515. PubMed ID: 32077382
    [No Abstract]   [Full Text] [Related]  

  • 12. Effects of body weight support and guidance force settings on muscle synergy during Lokomat walking.
    Cherni Y; Hajizadeh M; Dal Maso F; Turpin NA
    Eur J Appl Physiol; 2021 Nov; 121(11):2967-2980. PubMed ID: 34218291
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Can Lokomat therapy with children and adolescents be improved? An adaptive clinical pilot trial comparing Guidance force, Path control, and FreeD.
    Aurich-Schuler T; Grob F; van Hedel HJA; Labruyère R
    J Neuroeng Rehabil; 2017 Jul; 14(1):76. PubMed ID: 28705170
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clinical utility of the over-ground bodyweight-supporting walking system Andago in children and youths with gait impairments.
    van Hedel HJA; Rosselli I; Baumgartner-Ricklin S
    J Neuroeng Rehabil; 2021 Feb; 18(1):29. PubMed ID: 33557834
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of Electromechanical Exoskeleton-Assisted Gait Training on Walking Ability of Stroke Patients: A Randomized Controlled Trial.
    Nam YG; Lee JW; Park JW; Lee HJ; Nam KY; Park JH; Yu CS; Choi MR; Kwon BS
    Arch Phys Med Rehabil; 2019 Jan; 100(1):26-31. PubMed ID: 30055163
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combined task-specific training and strengthening effects on locomotor recovery post-stroke: a case study.
    Sullivan K; Klassen T; Mulroy S
    J Neurol Phys Ther; 2006 Sep; 30(3):130-41. PubMed ID: 17029656
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relationship between gait quality measures and modular neuromuscular control parameters in chronic post-stroke individuals.
    Shin SY; Kim Y; Jayaraman A; Park HS
    J Neuroeng Rehabil; 2021 Apr; 18(1):58. PubMed ID: 33827607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of an exoskeleton-assisted gait training on post-stroke lower-limb muscle coordination.
    Zhu F; Kern M; Fowkes E; Afzal T; Contreras-Vidal JL; Francisco GE; Chang SH
    J Neural Eng; 2021 Jun; 18(4):. PubMed ID: 33752175
    [No Abstract]   [Full Text] [Related]  

  • 19. Altered muscle activation patterns (AMAP): an analytical tool to compare muscle activity patterns of hemiparetic gait with a normative profile.
    Srivastava S; Patten C; Kautz SA
    J Neuroeng Rehabil; 2019 Jan; 16(1):21. PubMed ID: 30704483
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Applying a pelvic corrective force induces forced use of the paretic leg and improves paretic leg EMG activities of individuals post-stroke during treadmill walking.
    Hsu CJ; Kim J; Tang R; Roth EJ; Rymer WZ; Wu M
    Clin Neurophysiol; 2017 Oct; 128(10):1915-1922. PubMed ID: 28826022
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.