BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

398 related articles for article (PubMed ID: 31931880)

  • 1. Quantification of tumor burden in multiple myeloma by atlas-based semi-automatic segmentation of WB-DWI.
    Almeida SD; Santinha J; Oliveira FPM; Ip J; Lisitskaya M; Lourenço J; Uysal A; Matos C; João C; Papanikolaou N
    Cancer Imaging; 2020 Jan; 20(1):6. PubMed ID: 31931880
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fully Automatic Segmentation of Acute Ischemic Lesions on Diffusion-Weighted Imaging Using Convolutional Neural Networks: Comparison with Conventional Algorithms.
    Woo I; Lee A; Jung SC; Lee H; Kim N; Cho SJ; Kim D; Lee J; Sunwoo L; Kang DW
    Korean J Radiol; 2019 Aug; 20(8):1275-1284. PubMed ID: 31339015
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interobserver agreement of whole-body magnetic resonance imaging is superior to whole-body computed tomography for assessing disease burden in patients with multiple myeloma.
    Lai AYT; Riddell A; Barwick T; Boyd K; Rockall A; Kaiser M; Koh DM; Saffar H; Yusuf S; Messiou C
    Eur Radiol; 2020 Jan; 30(1):320-327. PubMed ID: 31267214
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of whole-body MRI for treatment response assessment in multiple myeloma: comparison between clinical response and imaging response.
    Park HY; Kim KW; Yoon MA; Lee MH; Chae EJ; Lee JH; Chung HW; Yoon DH
    Cancer Imaging; 2020 Jan; 20(1):14. PubMed ID: 32000858
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discriminating Depth of Response to Therapy in Multiple Myeloma Using Whole-body Diffusion-weighted MRI with Apparent Diffusion Coefficient: Preliminary Results From a Single-center Study.
    Wu C; Huang J; Xu WB; Guan YJ; Ling HW; Mi JQ; Yan H
    Acad Radiol; 2018 Jul; 25(7):904-914. PubMed ID: 29373210
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of Whole-Body DWI and
    Chen J; Li C; Tian Y; Xiao Q; Deng M; Hu H; Wen B; He Y
    AJR Am J Roentgenol; 2019 Sep; 213(3):514-523. PubMed ID: 31166755
    [No Abstract]   [Full Text] [Related]  

  • 7. Evaluation of Diffusion Lesion Volume Measurements in Acute Ischemic Stroke Using Encoder-Decoder Convolutional Network.
    Kim YC; Lee JE; Yu I; Song HN; Baek IY; Seong JK; Jeong HG; Kim BJ; Nam HS; Chung JW; Bang OY; Kim GM; Seo WK
    Stroke; 2019 Jun; 50(6):1444-1451. PubMed ID: 31092169
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fully automatic, multiorgan segmentation in normal whole body magnetic resonance imaging (MRI), using classification forests (CFs), convolutional neural networks (CNNs), and a multi-atlas (MA) approach.
    Lavdas I; Glocker B; Kamnitsas K; Rueckert D; Mair H; Sandhu A; Taylor SA; Aboagye EO; Rockall AG
    Med Phys; 2017 Oct; 44(10):5210-5220. PubMed ID: 28756622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MRI Diffusion-Weighted Imaging to Measure Infarct Volume: Assessment of Manual Segmentation Variability.
    Cimflova P; Kral J; Volny O; Horn M; Ojha P; Cabal M; Kasickova L; Havelka J; Jonszta T; Bar M; Qiu W
    J Neuroimaging; 2021 May; 31(3):541-550. PubMed ID: 33783929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-atlas segmentation of the whole hippocampus and subfields using multiple automatically generated templates.
    Pipitone J; Park MT; Winterburn J; Lett TA; Lerch JP; Pruessner JC; Lepage M; Voineskos AN; Chakravarty MM;
    Neuroimage; 2014 Nov; 101():494-512. PubMed ID: 24784800
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Segmentation of prostate zones using probabilistic atlas-based method with diffusion-weighted MR images.
    Singh D; Kumar V; Das CJ; Singh A; Mehndiratta A
    Comput Methods Programs Biomed; 2020 Nov; 196():105572. PubMed ID: 32544780
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep Learning for Automatic Bone Marrow Apparent Diffusion Coefficient Measurements From Whole-Body Magnetic Resonance Imaging in Patients With Multiple Myeloma: A Retrospective Multicenter Study.
    Wennmann M; Neher P; Stanczyk N; Kahl KC; Kächele J; Weru V; Hielscher T; Grözinger M; Chmelik J; Zhang KS; Bauer F; Nonnenmacher T; Debic M; Sauer S; Rotkopf LT; Jauch A; Schlamp K; Mai EK; Weinhold N; Afat S; Horger M; Goldschmidt H; Schlemmer HP; Weber TF; Delorme S; Kurz FT; Maier-Hein K
    Invest Radiol; 2023 Apr; 58(4):273-282. PubMed ID: 36256790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing myeloma bone disease with whole-body diffusion-weighted imaging: comparison with x-ray skeletal survey by region and relationship with laboratory estimates of disease burden.
    Giles SL; deSouza NM; Collins DJ; Morgan VA; West S; Davies FE; Morgan GJ; Messiou C
    Clin Radiol; 2015 Jun; 70(6):614-21. PubMed ID: 25799364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of unsupervised classification methods for brain tumor segmentation using multi-parametric MRI.
    Sauwen N; Acou M; Van Cauter S; Sima DM; Veraart J; Maes F; Himmelreich U; Achten E; Van Huffel S
    Neuroimage Clin; 2016; 12():753-764. PubMed ID: 27812502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Apparent diffusion coefficient maps integrated in whole-body MRI examination for the evaluation of tumor response to chemotherapy in patients with multiple myeloma.
    Bonaffini PA; Ippolito D; Casiraghi A; Besostri V; Franzesi CT; Sironi S
    Acad Radiol; 2015 Sep; 22(9):1163-71. PubMed ID: 26182979
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Feasibility and possible value of quantitative semi-automated diffusion weighted imaging volumetry of neuroblastic tumors.
    Gassenmaier S; Tsiflikas I; Fuchs J; Grimm R; Urla C; Esser M; Maennlin S; Ebinger M; Warmann SW; Schäfer JF
    Cancer Imaging; 2020 Dec; 20(1):89. PubMed ID: 33334369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Role of whole-body diffusion weighted imaging (WB-DWI) in the diagnosis and monitoring of newly diagnosed multiple myeloma].
    Wang PF; Li YC; Xu Y; Wang XM; Guo L; Fu CC
    Zhonghua Xue Ye Xue Za Zhi; 2017 Feb; 38(2):129-133. PubMed ID: 28279037
    [No Abstract]   [Full Text] [Related]  

  • 18. Deep learning for fully automated tumor segmentation and extraction of magnetic resonance radiomics features in cervical cancer.
    Lin YC; Lin CH; Lu HY; Chiang HJ; Wang HK; Huang YT; Ng SH; Hong JH; Yen TC; Lai CH; Lin G
    Eur Radiol; 2020 Mar; 30(3):1297-1305. PubMed ID: 31712961
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Whole body MRI with DWI in people with NF1 and Schwannomatosis: Are qualitative and quantitative imaging features of peripheral lesions comparable to localized MRI?
    Debs P; Fayad LM; Romo CG; Ahlawat S
    Eur J Radiol; 2023 May; 162():110802. PubMed ID: 37001256
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diagnostic performance of computed tomography and diffusion-weighted imaging as first-line imaging modality according to the International Myeloma Working Group (IMWG) imaging algorithm for monoclonal plasma cell disorders.
    Yoon MA; Chee CG; Chung HW; Lee DH; Kim KW
    Acta Radiol; 2022 May; 63(5):672-683. PubMed ID: 33853375
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.