These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 31931991)

  • 1. Biocatalytic hydrogenations on carbon supports.
    Thompson LA; Rowbotham JS; Reeve HA; Zor C; Grobert N; Vincent KA
    Methods Enzymol; 2020; 630():303-325. PubMed ID: 31931991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. H
    Zor C; Reeve HA; Quinson J; Thompson LA; Lonsdale TH; Dillon F; Grobert N; Vincent KA
    Chem Commun (Camb); 2017 Aug; 53(71):9839-9841. PubMed ID: 28795176
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzyme-Modified Particles for Selective Biocatalytic Hydrogenation by Hydrogen-Driven NADH Recycling.
    Reeve HA; Lauterbach L; Lenz O; Vincent KA
    ChemCatChem; 2015 Nov; 7(21):3480-3487. PubMed ID: 26613009
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biocatalysts for fuel cells: efficient hydrogenase orientation for H2 oxidation at electrodes modified with carbon nanotubes.
    Lojou E; Luo X; Brugna M; Candoni N; Dementin S; Giudici-Orticoni MT
    J Biol Inorg Chem; 2008 Sep; 13(7):1157-67. PubMed ID: 18592277
    [TBL] [Abstract][Full Text] [Related]  

  • 5. E. coli Nickel-Iron Hydrogenase 1 Catalyses Non-native Reduction of Flavins: Demonstration for Alkene Hydrogenation by Old Yellow Enzyme Ene-reductases*.
    Joseph Srinivasan S; Cleary SE; Ramirez MA; Reeve HA; Paul CE; Vincent KA
    Angew Chem Int Ed Engl; 2021 Jun; 60(25):13824-13828. PubMed ID: 33721401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved strategies for electrochemical 1,4-NAD(P)H
    Morrison CS; Armiger WB; Dodds DR; Dordick JS; Koffas MAG
    Biotechnol Adv; 2018; 36(1):120-131. PubMed ID: 29030132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. H₂-driven cofactor regeneration with NAD(P)⁺-reducing hydrogenases.
    Lauterbach L; Lenz O; Vincent KA
    FEBS J; 2013 Jul; 280(13):3058-68. PubMed ID: 23497170
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemo-bio catalysis using carbon supports: application in H
    Zhao X; Cleary SE; Zor C; Grobert N; Reeve HA; Vincent KA
    Chem Sci; 2021 May; 12(23):8105-8114. PubMed ID: 34194700
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biocatalytic electrodes based on single-walled carbon nanotube network thin films.
    Wang D; Rack JJ; Chen L
    J Nanosci Nanotechnol; 2009 Apr; 9(4):2310-5. PubMed ID: 19437969
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering of alanine dehydrogenase from Bacillus subtilis for novel cofactor specificity.
    Lerchner A; Jarasch A; Skerra A
    Biotechnol Appl Biochem; 2016 Sep; 63(5):616-624. PubMed ID: 26202482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Specific and reversible immobilization of NADH oxidase on functionalized carbon nanotubes.
    Wang L; Wei L; Chen Y; Jiang R
    J Biotechnol; 2010 Oct; 150(1):57-63. PubMed ID: 20630484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biocatalytic C=C Bond Reduction through Carbon Nanodot-Sensitized Regeneration of NADH Analogues.
    Kim J; Lee SH; Tieves F; Choi DS; Hollmann F; Paul CE; Park CB
    Angew Chem Int Ed Engl; 2018 Oct; 57(42):13825-13828. PubMed ID: 30062834
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzymes as modular catalysts for redox half-reactions in H2-powered chemical synthesis: from biology to technology.
    Reeve HA; Ash PA; Park H; Huang A; Posidias M; Tomlinson C; Lenz O; Vincent KA
    Biochem J; 2017 Jan; 474(2):215-230. PubMed ID: 28062838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-Particle Kinetics of Immobilized Enzymes by Harnessing the Autofluorescence of Co-Immobilized Cofactors.
    Benítez-Mateos AI
    Methods Mol Biol; 2020; 2100():309-317. PubMed ID: 31939132
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Co-Immobilization and Co-Localization of Multi-Enzyme Systems on Porous Materials.
    Orrego AH; López-Gallego F; Fernandez-Lorente G; Guisan JM; Rocha-Martín J
    Methods Mol Biol; 2020; 2100():297-308. PubMed ID: 31939131
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hierarchically Porous Biocatalytic MOF Microreactor as a Versatile Platform towards Enhanced Multienzyme and Cofactor-Dependent Biocatalysis.
    Liang J; Gao S; Liu J; Zulkifli MYB; Xu J; Scott J; Chen V; Shi J; Rawal A; Liang K
    Angew Chem Int Ed Engl; 2021 Mar; 60(10):5421-5428. PubMed ID: 33258208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzymatic and spectroscopic properties of a thermostable [NiFe]‑hydrogenase performing H
    Preissler J; Wahlefeld S; Lorent C; Teutloff C; Horch M; Lauterbach L; Cramer SP; Zebger I; Lenz O
    Biochim Biophys Acta Bioenerg; 2018 Jan; 1859(1):8-18. PubMed ID: 28970007
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NAD(H)-coupled hydrogen cycling - structure-function relationships of bidirectional [NiFe] hydrogenases.
    Horch M; Lauterbach L; Lenz O; Hildebrandt P; Zebger I
    FEBS Lett; 2012 Mar; 586(5):545-56. PubMed ID: 22056977
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemical Bioreactor Technology for Biocatalysis and Microbial Electrosynthesis.
    Morrison C; Heitmann E; Armiger W; Dodds D; Koffas M
    Adv Appl Microbiol; 2018; 105():51-86. PubMed ID: 30342723
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pd(II)-Directed Encapsulation of Hydrogenase within the Layer-by-Layer Multilayers of Carbon Nanotube Polyelectrolyte Used as a Heterogeneous Catalyst for Oxidation of Hydrogen.
    Liu J; Zorin NA; Chen M; Qian DJ
    Langmuir; 2015 Jun; 31(23):6546-53. PubMed ID: 26010012
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.