BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 31932312)

  • 1. Metabolic Switching of
    Singh PR; Vijjamarri AK; Sarkar D
    J Bacteriol; 2020 Mar; 202(7):. PubMed ID: 31932312
    [No Abstract]   [Full Text] [Related]  

  • 2. PhoP: a missing piece in the intricate puzzle of Mycobacterium tuberculosis virulence.
    Gonzalo-Asensio J; Mostowy S; Harders-Westerveen J; Huygen K; Hernández-Pando R; Thole J; Behr M; Gicquel B; Martín C
    PLoS One; 2008; 3(10):e3496. PubMed ID: 18946503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functioning of Mycobacterial Heat Shock Repressors Requires the Master Virulence Regulator PhoP.
    Sevalkar RR; Arora D; Singh PR; Singh R; Nandicoori VK; Karthikeyan S; Sarkar D
    J Bacteriol; 2019 Jun; 201(12):. PubMed ID: 30962357
    [TBL] [Abstract][Full Text] [Related]  

  • 4. EspR-dependent ESAT-6 Protein Secretion of Mycobacterium tuberculosis Requires the Presence of Virulence Regulator PhoP.
    Anil Kumar V; Goyal R; Bansal R; Singh N; Sevalkar RR; Kumar A; Sarkar D
    J Biol Chem; 2016 Sep; 291(36):19018-30. PubMed ID: 27445330
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mycobacterium tuberculosis virulence-regulator PhoP interacts with alternative sigma factor SigE during acid-stress response.
    Bansal R; Anil Kumar V; Sevalkar RR; Singh PR; Sarkar D
    Mol Microbiol; 2017 May; 104(3):400-411. PubMed ID: 28142206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Domain structure of virulence-associated response regulator PhoP of Mycobacterium tuberculosis: role of the linker region in regulator-promoter interaction(s).
    Pathak A; Goyal R; Sinha A; Sarkar D
    J Biol Chem; 2010 Nov; 285(45):34309-18. PubMed ID: 20814030
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptional activation of the Mycobacterium tuberculosis virulence-associated small RNA MTS1338 by the response regulators DosR and PhoP.
    Kumar K; Dutta T
    FEBS Lett; 2024 May; 598(9):1034-1044. PubMed ID: 38639734
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Convergence of two global regulators to coordinate expression of essential virulence determinants of
    Khan H; Paul P; Sevalkar RR; Kachhap S; Singh B; Sarkar D
    Elife; 2022 Nov; 11():. PubMed ID: 36350294
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A point mutation in the two-component regulator PhoP-PhoR accounts for the absence of polyketide-derived acyltrehaloses but not that of phthiocerol dimycocerosates in Mycobacterium tuberculosis H37Ra.
    Chesne-Seck ML; Barilone N; Boudou F; Gonzalo Asensio J; Kolattukudy PE; Martín C; Cole ST; Gicquel B; Gopaul DN; Jackson M
    J Bacteriol; 2008 Feb; 190(4):1329-34. PubMed ID: 18065542
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA consensus sequence motif for binding response regulator PhoP, a virulence regulator of Mycobacterium tuberculosis.
    He X; Wang S
    Biochemistry; 2014 Dec; 53(51):8008-20. PubMed ID: 25434965
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The sensor kinase MtrB of
    Banerjee SK; Lata S; Sharma AK; Bagchi S; Kumar M; Sahu SK; Sarkar D; Gupta P; Jana K; Gupta UD; Singh R; Saha S; Basu J; Kundu M
    J Biol Chem; 2019 Dec; 294(52):19862-19876. PubMed ID: 31653701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cmr is a redox-responsive regulator of DosR that contributes to M. tuberculosis virulence.
    Smith LJ; Bochkareva A; Rolfe MD; Hunt DM; Kahramanoglou C; Braun Y; Rodgers A; Blockley A; Coade S; Lougheed KEA; Hafneh NA; Glenn SM; Crack JC; Le Brun NE; Saldanha JW; Makarov V; Nobeli I; Arnvig K; Mukamolova GV; Buxton RS; Green J
    Nucleic Acids Res; 2017 Jun; 45(11):6600-6612. PubMed ID: 28482027
    [TBL] [Abstract][Full Text] [Related]  

  • 13.
    Khan H; Paul P; Goar H; Bamniya B; Baid N; Sarkar D
    Elife; 2024 May; 13():. PubMed ID: 38739431
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An essential role for phoP in Mycobacterium tuberculosis virulence.
    Pérez E; Samper S; Bordas Y; Guilhot C; Gicquel B; Martín C
    Mol Microbiol; 2001 Jul; 41(1):179-87. PubMed ID: 11454210
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anaerobic Mycobacterium tuberculosis Cell Death Stems from Intracellular Acidification Mitigated by the DosR Regulon.
    Reichlen MJ; Leistikow RL; Scobey MS; Born SEM; Voskuil MI
    J Bacteriol; 2017 Dec; 199(23):. PubMed ID: 28874407
    [No Abstract]   [Full Text] [Related]  

  • 16. Towards understanding the biological function of the unusual chaperonin Cpn60.1 (GroEL1) of Mycobacterium tuberculosis.
    Sharma A; Rustad T; Mahajan G; Kumar A; Rao KV; Banerjee S; Sherman DR; Mande SC
    Tuberculosis (Edinb); 2016 Mar; 97():137-46. PubMed ID: 26822628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interplay of PhoP and DevR response regulators defines expression of the dormancy regulon in virulent
    Vashist A; Malhotra V; Sharma G; Tyagi JS; Clark-Curtiss JE
    J Biol Chem; 2018 Oct; 293(42):16413-16425. PubMed ID: 30181216
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PhoP, a key player in Mycobacterium tuberculosis virulence.
    Ryndak M; Wang S; Smith I
    Trends Microbiol; 2008 Nov; 16(11):528-34. PubMed ID: 18835713
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The LuxR family regulator Rv0195 modulates Mycobacterium tuberculosis dormancy and virulence.
    Fang H; Yu D; Hong Y; Zhou X; Li C; Sun B
    Tuberculosis (Edinb); 2013 Jul; 93(4):425-31. PubMed ID: 23673208
    [TBL] [Abstract][Full Text] [Related]  

  • 20. mosR, a novel transcriptional regulator of hypoxia and virulence in Mycobacterium tuberculosis.
    Abomoelak B; Hoye EA; Chi J; Marcus SA; Laval F; Bannantine JP; Ward SK; Daffé M; Liu HD; Talaat AM
    J Bacteriol; 2009 Oct; 191(19):5941-52. PubMed ID: 19648248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.