These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 31932313)

  • 41. Mechanisms of decreased susceptibility to beta-defensins by Treponema denticola.
    Brissette CA; Lukehart SA
    Infect Immun; 2007 May; 75(5):2307-15. PubMed ID: 17325047
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Identification of a Treponema denticola OppA homologue that binds host proteins present in the subgingival environment.
    Fenno JC; Tamura M; Hannam PM; Wong GW; Chan RA; McBride BC
    Infect Immun; 2000 Apr; 68(4):1884-92. PubMed ID: 10722578
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Biofilm formation by the periodontopathic bacteria Treponema denticola and Porphyromonas gingivalis.
    Kuramitsu HK; Chen W; Ikegami A
    J Periodontol; 2005 Nov; 76(11 Suppl):2047-51. PubMed ID: 16277575
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Localization and pathogenic role of the cysteine protease dentipain in Treponema denticola.
    Miyai-Murai Y; Okamoto-Shibayama K; Sato T; Kikuchi Y; Kokubu E; Potempa J; Ishihara K
    Mol Oral Microbiol; 2023 Jun; 38(3):212-223. PubMed ID: 36641800
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Fibronectin-binding protein TDE1579 affects cytotoxicity of Treponema denticola.
    Xu X; Steffensen B; Robichaud TK; Mikhailova M; Lai V; Montgomery R; Chu L
    Anaerobe; 2015 Dec; 36():39-48. PubMed ID: 26456217
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Multiple enzymes can make hydrogen sulfide from cysteine in Treponema denticola.
    Phillips L; Chu L; Kolodrubetz D
    Anaerobe; 2020 Aug; 64():102231. PubMed ID: 32603680
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Oral treponeme major surface protein: Sequence diversity and distributions within periodontal niches.
    You M; Chan Y; Lacap-Bugler DC; Huo YB; Gao W; Leung WK; Watt RM
    Mol Oral Microbiol; 2017 Dec; 32(6):455-474. PubMed ID: 28453906
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Construction and analysis of hemin binding protein mutants in the oral pathogen Treponema denticola.
    Xu X; Kolodrubetz D
    Res Microbiol; 2002 Nov; 153(9):569-77. PubMed ID: 12455704
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Genetic Manipulations of Oral Spirochete Treponema denticola.
    Kurniyati K; Li C
    Methods Mol Biol; 2021; 2210():15-23. PubMed ID: 32815123
    [TBL] [Abstract][Full Text] [Related]  

  • 50. pyrF as a Counterselectable Marker for Unmarked Genetic Manipulations in Treponema denticola.
    Kurniyati K; Li C
    Appl Environ Microbiol; 2016 Feb; 82(4):1346-52. PubMed ID: 26682856
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The Treponema denticola AtcR LytTR domain-containing response regulator interacts with three architecturally distinct promoter elements: implications for understanding the molecular signaling mechanisms that drive the progression of periodontal disease.
    Miller DP; Frederick JR; Sarkar J; Marconi RT
    Mol Oral Microbiol; 2014 Oct; 29(5):219-32. PubMed ID: 24890414
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Treponema denticola upregulates MMP-2 activation in periodontal ligament cells: interplay between epigenetics and periodontal infection.
    Miao D; Godovikova V; Qian X; Seshadrinathan S; Kapila YL; Fenno JC
    Arch Oral Biol; 2014 Oct; 59(10):1056-64. PubMed ID: 24973519
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Genetic manipulation of Treponema denticola.
    Kuramitsu HK; Chi B; Ikegami A
    Curr Protoc Microbiol; 2005 Jul; Chapter 12():Unit 12B.2. PubMed ID: 18770552
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Regulation and activity of a zinc uptake regulator, Zur, in Corynebacterium diphtheriae.
    Smith KF; Bibb LA; Schmitt MP; Oram DM
    J Bacteriol; 2009 Mar; 191(5):1595-603. PubMed ID: 19074382
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Identification and functional analysis of CT069 as a novel transcriptional regulator in Chlamydia.
    Akers JC; HoDac H; Lathrop RH; Tan M
    J Bacteriol; 2011 Nov; 193(22):6123-31. PubMed ID: 21908669
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The transcriptomic response to cannabidiol of Treponema denticola, a phytocannabinoid-resistant periodontal pathogen.
    Tan J; Lamont GJ; Sekula M; Hong H; Sloan L; Scott DA
    J Clin Periodontol; 2024 Feb; 51(2):222-232. PubMed ID: 38105008
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Characterization of a novel family of fibronectin-binding proteins with M23 peptidase domains from Treponema denticola.
    Bamford CV; Francescutti T; Cameron CE; Jenkinson HF; Dymock D
    Mol Oral Microbiol; 2010 Dec; 25(6):369-83. PubMed ID: 21040511
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mn uptake system affects the virulence of Streptococcus suis by mediating oxidative stress.
    Peng W; Yang X; Wang Y; Wang N; Li X; Chen H; Yuan F; Bei W
    Vet Microbiol; 2022 Sep; 272():109518. PubMed ID: 35926476
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Expression of the MtsA lipoprotein of Streptococcus agalactiae A909 is regulated by manganese and iron.
    Bray BA; Sutcliffe IC; Harrington DJ
    Antonie Van Leeuwenhoek; 2009 Jan; 95(1):101-9. PubMed ID: 18982279
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A novel glycan modifies the flagellar filament proteins of the oral bacterium Treponema denticola.
    Kurniyati K; Kelly JF; Vinogradov E; Robotham A; Tu Y; Wang J; Liu J; Logan SM; Li C
    Mol Microbiol; 2017 Jan; 103(1):67-85. PubMed ID: 27696564
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.