These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Orphan nuclear receptor TLX contributes to androgen insensitivity in castration-resistant prostate cancer via its repression of androgen receptor transcription. Jia L; Wu D; Wang Y; You W; Wang Z; Xiao L; Cai G; Xu Z; Zou C; Wang F; Teoh JY; Ng CF; Yu S; Chan FL Oncogene; 2018 Jun; 37(25):3340-3355. PubMed ID: 29555975 [TBL] [Abstract][Full Text] [Related]
6. Regulation of CEACAM5 and Therapeutic Efficacy of an Anti-CEACAM5-SN38 Antibody-drug Conjugate in Neuroendocrine Prostate Cancer. DeLucia DC; Cardillo TM; Ang L; Labrecque MP; Zhang A; Hopkins JE; De Sarkar N; Coleman I; da Costa RMG; Corey E; True LD; Haffner MC; Schweizer MT; Morrissey C; Nelson PS; Lee JK Clin Cancer Res; 2021 Feb; 27(3):759-774. PubMed ID: 33199493 [TBL] [Abstract][Full Text] [Related]
7. The long noncoding RNA H19 regulates tumor plasticity in neuroendocrine prostate cancer. Singh N; Ramnarine VR; Song JH; Pandey R; Padi SKR; Nouri M; Olive V; Kobelev M; Okumura K; McCarthy D; Hanna MM; Mukherjee P; Sun B; Lee BR; Parker JB; Chakravarti D; Warfel NA; Zhou M; Bearss JJ; Gibb EA; Alshalalfa M; Karnes RJ; Small EJ; Aggarwal R; Feng F; Wang Y; Buttyan R; Zoubeidi A; Rubin M; Gleave M; Slack FJ; Davicioni E; Beltran H; Collins C; Kraft AS Nat Commun; 2021 Dec; 12(1):7349. PubMed ID: 34934057 [TBL] [Abstract][Full Text] [Related]
8. Identification of Novel Diagnosis Biomarkers for Therapy-Related Neuroendocrine Prostate Cancer. Zhang C; Qian J; Wu Y; Zhu Z; Yu W; Gong Y; Li X; He Z; Zhou L Pathol Oncol Res; 2021; 27():1609968. PubMed ID: 34646089 [No Abstract] [Full Text] [Related]
9. Bhagirath D; Yang TL; Tabatabai ZL; Majid S; Dahiya R; Tanaka Y; Saini S Clin Cancer Res; 2019 Nov; 25(21):6532-6545. PubMed ID: 31371344 [TBL] [Abstract][Full Text] [Related]
10. Expression of Fibroblast Activation Protein Is Enriched in Neuroendocrine Prostate Cancer and Predicts Worse Survival. Vlachostergios PJ; Karathanasis A; Tzortzis V Genes (Basel); 2022 Jan; 13(1):. PubMed ID: 35052475 [TBL] [Abstract][Full Text] [Related]
11. Selective targeting of PARP-2 inhibits androgen receptor signaling and prostate cancer growth through disruption of FOXA1 function. Gui B; Gui F; Takai T; Feng C; Bai X; Fazli L; Dong X; Liu S; Zhang X; Zhang W; Kibel AS; Jia L Proc Natl Acad Sci U S A; 2019 Jul; 116(29):14573-14582. PubMed ID: 31266892 [TBL] [Abstract][Full Text] [Related]
12. PARP Inhibition Suppresses GR-MYCN-CDK5-RB1-E2F1 Signaling and Neuroendocrine Differentiation in Castration-Resistant Prostate Cancer. Liu B; Li L; Yang G; Geng C; Luo Y; Wu W; Manyam GC; Korentzelos D; Park S; Tang Z; Wu C; Dong Z; Sigouros M; Sboner A; Beltran H; Chen Y; Corn PG; Tetzlaff MT; Troncoso P; Broom B; Thompson TC Clin Cancer Res; 2019 Nov; 25(22):6839-6851. PubMed ID: 31439587 [TBL] [Abstract][Full Text] [Related]
13. TROP2 promotes the proliferation and metastasis of glioblastoma cells by activating the JAK2/STAT3 signaling pathway. Hou J; Lv A; Deng Q; Zhang G; Hu X; Cui H Oncol Rep; 2019 Feb; 41(2):753-764. PubMed ID: 30431125 [TBL] [Abstract][Full Text] [Related]
14. Targeting RET Kinase in Neuroendocrine Prostate Cancer. VanDeusen HR; Ramroop JR; Morel KL; Bae SY; Sheahan AV; Sychev Z; Lau NA; Cheng LC; Tan VM; Li Z; Petersen A; Lee JK; Park JW; Yang R; Hwang JH; Coleman I; Witte ON; Morrissey C; Corey E; Nelson PS; Ellis L; Drake JM Mol Cancer Res; 2020 Aug; 18(8):1176-1188. PubMed ID: 32461304 [TBL] [Abstract][Full Text] [Related]
15. Upregulation of FAM84B during prostate cancer progression. Wong N; Gu Y; Kapoor A; Lin X; Ojo D; Wei F; Yan J; de Melo J; Major P; Wood G; Aziz T; Cutz JC; Bonert M; Patterson AJ; Tang D Oncotarget; 2017 Mar; 8(12):19218-19235. PubMed ID: 28186973 [TBL] [Abstract][Full Text] [Related]
16. Reciprocal YAP1 loss and INSM1 expression in neuroendocrine prostate cancer. Asrani K; Torres AF; Woo J; Vidotto T; Tsai HK; Luo J; Corey E; Hanratty B; Coleman I; Yegnasubramanian S; De Marzo AM; Nelson PS; Haffner MC; Lotan TL J Pathol; 2021 Dec; 255(4):425-437. PubMed ID: 34431104 [TBL] [Abstract][Full Text] [Related]
17. Targeting GPR30 with G-1: a new therapeutic target for castration-resistant prostate cancer. Lam HM; Ouyang B; Chen J; Ying J; Wang J; Wu CL; Jia L; Medvedovic M; Vessella RL; Ho SM Endocr Relat Cancer; 2014; 21(6):903-14. PubMed ID: 25287069 [TBL] [Abstract][Full Text] [Related]
18. Identification of DEK as a potential therapeutic target for neuroendocrine prostate cancer. Lin D; Dong X; Wang K; Wyatt AW; Crea F; Xue H; Wang Y; Wu R; Bell RH; Haegert A; Brahmbhatt S; Hurtado-Coll A; Gout PW; Fazli L; Gleave ME; Collins CC; Wang Y Oncotarget; 2015 Jan; 6(3):1806-20. PubMed ID: 25544761 [TBL] [Abstract][Full Text] [Related]
19. MCM2-7 complex is a novel druggable target for neuroendocrine prostate cancer. Hsu EC; Shen M; Aslan M; Liu S; Kumar M; Garcia-Marques F; Nguyen HM; Nolley R; Pitteri SJ; Corey E; Brooks JD; Stoyanova T Sci Rep; 2021 Jun; 11(1):13305. PubMed ID: 34172788 [TBL] [Abstract][Full Text] [Related]
20. ZRSR2 overexpression is a frequent and early event in castration-resistant prostate cancer development. He H; Hao J; Dong X; Wang Y; Xue H; Qu S; Choi SYC; Ci X; Wang Y; Wu R; Shi M; Zhao X; Collins C; Lin D; Wang Y Prostate Cancer Prostatic Dis; 2021 Sep; 24(3):775-785. PubMed ID: 33568749 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]