BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

401 related articles for article (PubMed ID: 31932422)

  • 1. Trop2 is a driver of metastatic prostate cancer with neuroendocrine phenotype via PARP1.
    Hsu EC; Rice MA; Bermudez A; Marques FJG; Aslan M; Liu S; Ghoochani A; Zhang CA; Chen YS; Zlitni A; Kumar S; Nolley R; Habte F; Shen M; Koul K; Peehl DM; Zoubeidi A; Gambhir SS; Kunder CA; Pitteri SJ; Brooks JD; Stoyanova T
    Proc Natl Acad Sci U S A; 2020 Jan; 117(4):2032-2042. PubMed ID: 31932422
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High expression of TROP2 characterizes different cell subpopulations in androgen-sensitive and androgen-independent prostate cancer cells.
    Xie J; Mølck C; Paquet-Fifield S; Butler L; ; Sloan E; Ventura S; Hollande F
    Oncotarget; 2016 Jul; 7(28):44492-44504. PubMed ID: 27283984
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting the MYCN-PARP-DNA Damage Response Pathway in Neuroendocrine Prostate Cancer.
    Zhang W; Liu B; Wu W; Li L; Broom BM; Basourakos SP; Korentzelos D; Luan Y; Wang J; Yang G; Park S; Azad AK; Cao X; Kim J; Corn PG; Logothetis CJ; Aparicio AM; Chinnaiyan AM; Navone N; Troncoso P; Thompson TC
    Clin Cancer Res; 2018 Feb; 24(3):696-707. PubMed ID: 29138344
    [No Abstract]   [Full Text] [Related]  

  • 4. Orphan nuclear receptor TLX contributes to androgen insensitivity in castration-resistant prostate cancer via its repression of androgen receptor transcription.
    Jia L; Wu D; Wang Y; You W; Wang Z; Xiao L; Cai G; Xu Z; Zou C; Wang F; Teoh JY; Ng CF; Yu S; Chan FL
    Oncogene; 2018 Jun; 37(25):3340-3355. PubMed ID: 29555975
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of CEACAM5 and Therapeutic Efficacy of an Anti-CEACAM5-SN38 Antibody-drug Conjugate in Neuroendocrine Prostate Cancer.
    DeLucia DC; Cardillo TM; Ang L; Labrecque MP; Zhang A; Hopkins JE; De Sarkar N; Coleman I; da Costa RMG; Corey E; True LD; Haffner MC; Schweizer MT; Morrissey C; Nelson PS; Lee JK
    Clin Cancer Res; 2021 Feb; 27(3):759-774. PubMed ID: 33199493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The long noncoding RNA H19 regulates tumor plasticity in neuroendocrine prostate cancer.
    Singh N; Ramnarine VR; Song JH; Pandey R; Padi SKR; Nouri M; Olive V; Kobelev M; Okumura K; McCarthy D; Hanna MM; Mukherjee P; Sun B; Lee BR; Parker JB; Chakravarti D; Warfel NA; Zhou M; Bearss JJ; Gibb EA; Alshalalfa M; Karnes RJ; Small EJ; Aggarwal R; Feng F; Wang Y; Buttyan R; Zoubeidi A; Rubin M; Gleave M; Slack FJ; Davicioni E; Beltran H; Collins C; Kraft AS
    Nat Commun; 2021 Dec; 12(1):7349. PubMed ID: 34934057
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of Novel Diagnosis Biomarkers for Therapy-Related Neuroendocrine Prostate Cancer.
    Zhang C; Qian J; Wu Y; Zhu Z; Yu W; Gong Y; Li X; He Z; Zhou L
    Pathol Oncol Res; 2021; 27():1609968. PubMed ID: 34646089
    [No Abstract]   [Full Text] [Related]  

  • 8.
    Bhagirath D; Yang TL; Tabatabai ZL; Majid S; Dahiya R; Tanaka Y; Saini S
    Clin Cancer Res; 2019 Nov; 25(21):6532-6545. PubMed ID: 31371344
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression of Fibroblast Activation Protein Is Enriched in Neuroendocrine Prostate Cancer and Predicts Worse Survival.
    Vlachostergios PJ; Karathanasis A; Tzortzis V
    Genes (Basel); 2022 Jan; 13(1):. PubMed ID: 35052475
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective targeting of PARP-2 inhibits androgen receptor signaling and prostate cancer growth through disruption of FOXA1 function.
    Gui B; Gui F; Takai T; Feng C; Bai X; Fazli L; Dong X; Liu S; Zhang X; Zhang W; Kibel AS; Jia L
    Proc Natl Acad Sci U S A; 2019 Jul; 116(29):14573-14582. PubMed ID: 31266892
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PARP Inhibition Suppresses GR-MYCN-CDK5-RB1-E2F1 Signaling and Neuroendocrine Differentiation in Castration-Resistant Prostate Cancer.
    Liu B; Li L; Yang G; Geng C; Luo Y; Wu W; Manyam GC; Korentzelos D; Park S; Tang Z; Wu C; Dong Z; Sigouros M; Sboner A; Beltran H; Chen Y; Corn PG; Tetzlaff MT; Troncoso P; Broom B; Thompson TC
    Clin Cancer Res; 2019 Nov; 25(22):6839-6851. PubMed ID: 31439587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TROP2 promotes the proliferation and metastasis of glioblastoma cells by activating the JAK2/STAT3 signaling pathway.
    Hou J; Lv A; Deng Q; Zhang G; Hu X; Cui H
    Oncol Rep; 2019 Feb; 41(2):753-764. PubMed ID: 30431125
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeting RET Kinase in Neuroendocrine Prostate Cancer.
    VanDeusen HR; Ramroop JR; Morel KL; Bae SY; Sheahan AV; Sychev Z; Lau NA; Cheng LC; Tan VM; Li Z; Petersen A; Lee JK; Park JW; Yang R; Hwang JH; Coleman I; Witte ON; Morrissey C; Corey E; Nelson PS; Ellis L; Drake JM
    Mol Cancer Res; 2020 Aug; 18(8):1176-1188. PubMed ID: 32461304
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Upregulation of FAM84B during prostate cancer progression.
    Wong N; Gu Y; Kapoor A; Lin X; Ojo D; Wei F; Yan J; de Melo J; Major P; Wood G; Aziz T; Cutz JC; Bonert M; Patterson AJ; Tang D
    Oncotarget; 2017 Mar; 8(12):19218-19235. PubMed ID: 28186973
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reciprocal YAP1 loss and INSM1 expression in neuroendocrine prostate cancer.
    Asrani K; Torres AF; Woo J; Vidotto T; Tsai HK; Luo J; Corey E; Hanratty B; Coleman I; Yegnasubramanian S; De Marzo AM; Nelson PS; Haffner MC; Lotan TL
    J Pathol; 2021 Dec; 255(4):425-437. PubMed ID: 34431104
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeting GPR30 with G-1: a new therapeutic target for castration-resistant prostate cancer.
    Lam HM; Ouyang B; Chen J; Ying J; Wang J; Wu CL; Jia L; Medvedovic M; Vessella RL; Ho SM
    Endocr Relat Cancer; 2014; 21(6):903-14. PubMed ID: 25287069
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of DEK as a potential therapeutic target for neuroendocrine prostate cancer.
    Lin D; Dong X; Wang K; Wyatt AW; Crea F; Xue H; Wang Y; Wu R; Bell RH; Haegert A; Brahmbhatt S; Hurtado-Coll A; Gout PW; Fazli L; Gleave ME; Collins CC; Wang Y
    Oncotarget; 2015 Jan; 6(3):1806-20. PubMed ID: 25544761
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Upregulation of Scavenger Receptor B1 Is Required for Steroidogenic and Nonsteroidogenic Cholesterol Metabolism in Prostate Cancer.
    Gordon JA; Noble JW; Midha A; Derakhshan F; Wang G; Adomat HH; Tomlinson Guns ES; Lin YY; Ren S; Collins CC; Nelson PS; Morrissey C; Wasan KM; Cox ME
    Cancer Res; 2019 Jul; 79(13):3320-3331. PubMed ID: 31064850
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MCM2-7 complex is a novel druggable target for neuroendocrine prostate cancer.
    Hsu EC; Shen M; Aslan M; Liu S; Kumar M; Garcia-Marques F; Nguyen HM; Nolley R; Pitteri SJ; Corey E; Brooks JD; Stoyanova T
    Sci Rep; 2021 Jun; 11(1):13305. PubMed ID: 34172788
    [TBL] [Abstract][Full Text] [Related]  

  • 20. N-Myc promotes therapeutic resistance development of neuroendocrine prostate cancer by differentially regulating miR-421/ATM pathway.
    Yin Y; Xu L; Chang Y; Zeng T; Chen X; Wang A; Groth J; Foo WC; Liang C; Hu H; Huang J
    Mol Cancer; 2019 Jan; 18(1):11. PubMed ID: 30657058
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.