These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
308 related articles for article (PubMed ID: 31932639)
1. Structural basis for the adaptation and function of chlorophyll f in photosystem I. Kato K; Shinoda T; Nagao R; Akimoto S; Suzuki T; Dohmae N; Chen M; Allakhverdiev SI; Shen JR; Akita F; Miyazaki N; Tomo T Nat Commun; 2020 Jan; 11(1):238. PubMed ID: 31932639 [TBL] [Abstract][Full Text] [Related]
2. Photosynthesis supported by a chlorophyll f-dependent, entropy-driven uphill energy transfer in Halomicronema hongdechloris cells adapted to far-red light. Schmitt FJ; Campbell ZY; Bui MV; Hüls A; Tomo T; Chen M; Maksimov EG; Allakhverdiev SI; Friedrich T Photosynth Res; 2019 Mar; 139(1-3):185-201. PubMed ID: 30039357 [TBL] [Abstract][Full Text] [Related]
3. Energy transfer from chlorophyll f to the trapping center in naturally occurring and engineered Photosystem I complexes. Kurashov V; Ho MY; Shen G; Piedl K; Laremore TN; Bryant DA; Golbeck JH Photosynth Res; 2019 Aug; 141(2):151-163. PubMed ID: 30710189 [TBL] [Abstract][Full Text] [Related]
4. Fourier transform visible and infrared difference spectroscopy for the study of P700 in photosystem I from Fischerella thermalis PCC 7521 cells grown under white light and far-red light: Evidence that the A Hastings G; Makita H; Agarwala N; Rohani L; Shen G; Bryant DA Biochim Biophys Acta Bioenerg; 2019 Jun; 1860(6):452-460. PubMed ID: 30986391 [TBL] [Abstract][Full Text] [Related]
6. Structure of a dimeric photosystem II complex from a cyanobacterium acclimated to far-red light. Gisriel CJ; Shen G; Flesher DA; Kurashov V; Golbeck JH; Brudvig GW; Amin M; Bryant DA J Biol Chem; 2023 Jan; 299(1):102815. PubMed ID: 36549647 [TBL] [Abstract][Full Text] [Related]
7. Evidence that chlorophyll f functions solely as an antenna pigment in far-red-light photosystem I from Fischerella thermalis PCC 7521. Cherepanov DA; Shelaev IV; Gostev FE; Aybush AV; Mamedov MD; Shen G; Nadtochenko VA; Bryant DA; Semenov AY; Golbeck JH Biochim Biophys Acta Bioenerg; 2020 Jun; 1861(5-6):148184. PubMed ID: 32179058 [TBL] [Abstract][Full Text] [Related]
8. Harvesting far-red light: Functional integration of chlorophyll f into Photosystem I complexes of Synechococcus sp. PCC 7002. Tros M; Bersanini L; Shen G; Ho MY; van Stokkum IHM; Bryant DA; Croce R Biochim Biophys Acta Bioenerg; 2020 Aug; 1861(8):148206. PubMed ID: 32305412 [TBL] [Abstract][Full Text] [Related]
9. Genome and proteome of the chlorophyll f-producing cyanobacterium Halomicronema hongdechloris: adaptative proteomic shifts under different light conditions. Chen M; Hernandez-Prieto MA; Loughlin PC; Li Y; Willows RD BMC Genomics; 2019 Mar; 20(1):207. PubMed ID: 30866821 [TBL] [Abstract][Full Text] [Related]
10. Harvesting Far-Red Light by Chlorophyll f in Photosystems I and II of Unicellular Cyanobacterium strain KC1. Itoh S; Ohno T; Noji T; Yamakawa H; Komatsu H; Wada K; Kobayashi M; Miyashita H Plant Cell Physiol; 2015 Oct; 56(10):2024-34. PubMed ID: 26320210 [TBL] [Abstract][Full Text] [Related]
11. Structure of a monomeric photosystem II core complex from a cyanobacterium acclimated to far-red light reveals the functions of chlorophylls d and f. Gisriel CJ; Shen G; Ho MY; Kurashov V; Flesher DA; Wang J; Armstrong WH; Golbeck JH; Gunner MR; Vinyard DJ; Debus RJ; Brudvig GW; Bryant DA J Biol Chem; 2022 Jan; 298(1):101424. PubMed ID: 34801554 [TBL] [Abstract][Full Text] [Related]
12. How electron tunneling and uphill excitation energy transfer support photochemistry in Halomicronema hongdechloris. Schmitt FJ; Hüls A; Moldenhauer M; Friedrich T Photosynth Res; 2024 Mar; 159(2-3):273-289. PubMed ID: 38198121 [TBL] [Abstract][Full Text] [Related]
13. Energy transfer in the chlorophyll f-containing cyanobacterium, Halomicronema hongdechloris, analyzed by time-resolved fluorescence spectroscopies. Akimoto S; Shinoda T; Chen M; Allakhverdiev SI; Tomo T Photosynth Res; 2015 Aug; 125(1-2):115-22. PubMed ID: 25648637 [TBL] [Abstract][Full Text] [Related]
14. A unique photosystem I reaction center from a chlorophyll d-containing cyanobacterium Acaryochloris marina. Xu C; Zhu Q; Chen JH; Shen L; Yi X; Huang Z; Wang W; Chen M; Kuang T; Shen JR; Zhang X; Han G J Integr Plant Biol; 2021 Oct; 63(10):1740-1752. PubMed ID: 34002536 [TBL] [Abstract][Full Text] [Related]
15. Impact of energy limitations on function and resilience in long-wavelength Photosystem II. Viola S; Roseby W; Santabarbara S; Nürnberg D; Assunção R; Dau H; Sellés J; Boussac A; Fantuzzi A; Rutherford AW Elife; 2022 Jul; 11():. PubMed ID: 35852834 [TBL] [Abstract][Full Text] [Related]
16. Adaptation processes in Schmitt FJ; Friedrich T Front Plant Sci; 2024; 15():1359195. PubMed ID: 39049856 [TBL] [Abstract][Full Text] [Related]
17. Characterization of chlorophyll f synthase heterologously produced in Synechococcus sp. PCC 7002. Shen G; Canniffe DP; Ho MY; Kurashov V; van der Est A; Golbeck JH; Bryant DA Photosynth Res; 2019 Apr; 140(1):77-92. PubMed ID: 30607859 [TBL] [Abstract][Full Text] [Related]
18. Structure of a photosystem I-ferredoxin complex from a marine cyanobacterium provides insights into far-red light photoacclimation. Gisriel CJ; Flesher DA; Shen G; Wang J; Ho MY; Brudvig GW; Bryant DA J Biol Chem; 2022 Jan; 298(1):101408. PubMed ID: 34793839 [TBL] [Abstract][Full Text] [Related]
19. Extensive remodeling of the photosynthetic apparatus alters energy transfer among photosynthetic complexes when cyanobacteria acclimate to far-red light. Ho MY; Niedzwiedzki DM; MacGregor-Chatwin C; Gerstenecker G; Hunter CN; Blankenship RE; Bryant DA Biochim Biophys Acta Bioenerg; 2020 Apr; 1861(4):148064. PubMed ID: 31421078 [TBL] [Abstract][Full Text] [Related]
20. Femtosecond infrared spectroscopy of chlorophyll f-containing photosystem I. Zamzam N; Kaucikas M; Nürnberg DJ; Rutherford AW; van Thor JJ Phys Chem Chem Phys; 2019 Jan; 21(3):1224-1234. PubMed ID: 30566126 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]