BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 31932647)

  • 1. Annexin-V stabilizes membrane defects by inducing lipid phase transition.
    Lin YC; Chipot C; Scheuring S
    Nat Commun; 2020 Jan; 11(1):230. PubMed ID: 31932647
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-speed atomic force microscopy shows that annexin V stabilizes membranes on the second timescale.
    Miyagi A; Chipot C; Rangl M; Scheuring S
    Nat Nanotechnol; 2016 Sep; 11(9):783-90. PubMed ID: 27271964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterizing the binding of annexin V to a lipid bilayer using molecular dynamics simulations.
    Chen Z; Mao Y; Yang J; Zhang T; Zhao L; Yu K; Zheng M; Jiang H; Yang H
    Proteins; 2014 Feb; 82(2):312-22. PubMed ID: 23934928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Annexin A5 stabilizes matrix vesicle-biomimetic lipid membranes: unravelling a new role of annexins in calcification.
    Ferreira CR; Cruz MAE; Bolean M; Andrilli LHDS; Millan JL; Ramos AP; Bottini M; Ciancaglini P
    Eur Biophys J; 2023 Nov; 52(8):721-733. PubMed ID: 37938350
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Peripheral protein organization and its influence on lipid diffusion in biomimetic membranes.
    Vats K; Knutson K; Hinderliter A; Sheets ED
    ACS Chem Biol; 2010 Apr; 5(4):393-403. PubMed ID: 20175560
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reversible immobilization of diffusive membrane-associated proteins using a liquid-gel bilayer phase transition: a case study of Annexin V monomers.
    Han JJ; Boo DW
    Langmuir; 2009 Mar; 25(5):3083-8. PubMed ID: 19437714
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the kinetics of adsorption and two-dimensional self-assembly of annexin A5 on supported lipid bilayers.
    Richter RP; Him JL; Tessier B; Tessier C; Brisson AR
    Biophys J; 2005 Nov; 89(5):3372-85. PubMed ID: 16085777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of annexin V on the structure and dynamics of phosphatidylcholine/phosphatidylserine bilayers: a fluorescence and NMR study.
    Saurel O; Cézanne L; Milon A; Tocanne JF; Demange P
    Biochemistry; 1998 Feb; 37(5):1403-10. PubMed ID: 9477969
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation of two-dimensional arrays of annexin V on phosphatidylserine-containing liposomes.
    Pigault C; Follenius-Wund A; Schmutz M; Freyssinet JM; Brisson A
    J Mol Biol; 1994 Feb; 236(1):199-208. PubMed ID: 8107105
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Binding of annexin V to bilayers with various phospholipid compositions using glass beads in a flow cytometer.
    Stuart MC; Reutelingsperger CP; Frederik PM
    Cytometry; 1998 Dec; 33(4):414-9. PubMed ID: 9845435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Annexin V interaction with phosphatidylserine-containing vesicles at low and neutral pH.
    Köhler G; Hering U; Zschörnig O; Arnold K
    Biochemistry; 1997 Jul; 36(26):8189-94. PubMed ID: 9201968
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The conserved core domains of annexins A1, A2, A5, and B12 can be divided into two groups with different Ca2+-dependent membrane-binding properties.
    Patel DR; Isas JM; Ladokhin AS; Jao CC; Kim YE; Kirsch T; Langen R; Haigler HT
    Biochemistry; 2005 Mar; 44(8):2833-44. PubMed ID: 15723527
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro model of annexin A5 crystallization on natural phospholipid bilayers observed by atomic force microscopy.
    Irman S; Miha S; Igor M; Rozman B; Bozic B
    Autoimmunity; 2009 Aug; 42(5):414-23. PubMed ID: 19811258
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extracellular annexin A5: functions of phosphatidylserine-binding and two-dimensional crystallization.
    van Genderen HO; Kenis H; Hofstra L; Narula J; Reutelingsperger CP
    Biochim Biophys Acta; 2008 Jun; 1783(6):953-63. PubMed ID: 18334229
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Retinoschisin (RS1) interacts with negatively charged lipid bilayers in the presence of Ca2+: an atomic force microscopy study.
    Kotova S; Vijayasarathy C; Dimitriadis EK; Ikonomou L; Jaffe H; Sieving PA
    Biochemistry; 2010 Aug; 49(33):7023-32. PubMed ID: 20677810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcium-dependent and -independent annexin V binding: distinct molecular behaviours at cell membrane interfaces.
    Ma YH; Li B; Yang J; Han X; Chen Z; Lu X
    Chem Commun (Camb); 2020 Feb; 56(11):1653-1656. PubMed ID: 31939470
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Organization and dynamics of the proteolipid complexes formed by annexin V and lipids in planar supported lipid bilayers.
    Cézanne L; Lopez A; Loste F; Parnaud G; Saurel O; Demange P; Tocanne JF
    Biochemistry; 1999 Mar; 38(9):2779-86. PubMed ID: 10052949
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Mg2+ versus Ca2+ on the behavior of annexin A5 in a membrane-bound state.
    Fezoua-Boubegtiten Z; Desbat B; Brisson A; Gounou C; Laguerre M; Lecomte S
    Eur Biophys J; 2011 May; 40(5):641-9. PubMed ID: 21264465
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calcium-dependent association of annexins with lipid bilayers modifies gramicidin A channel parameters.
    Eskesen K; Kristensen BI; Jørgensen AJ; Kristensen P; Bennekou P
    Eur Biophys J; 2001; 30(1):27-33. PubMed ID: 11372530
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Voltage dependent binding of annexin V, annexin VI and annexin VII-core to acidic phospholipid membranes.
    Hofmann A; Benz J; Liemann S; Huber R
    Biochim Biophys Acta; 1997 Dec; 1330(2):254-64. PubMed ID: 9408179
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.