These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 31932661)

  • 1. Simultaneous CO
    Septavaux J; Tosi C; Jame P; Nervi C; Gobetto R; Leclaire J
    Nat Chem; 2020 Feb; 12(2):202-212. PubMed ID: 31932661
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Separation and capture of CO2 from large stationary sources and sequestration in geological formations--coalbeds and deep saline aquifers.
    White CM; Strazisar BR; Granite EJ; Hoffman JS; Pennline HW;
    J Air Waste Manag Assoc; 2003 Jun; 53(6):645-715. PubMed ID: 12828330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Life cycle assessment of carbon capture and utilization from ammonia process in Mexico.
    Morales Mora MA; Vergara CP; Leiva MA; Martínez Delgadillo SA; Rosa-Domínguez ER
    J Environ Manage; 2016 Dec; 183(Pt 3):998-1008. PubMed ID: 27692511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Review of post-combustion carbon dioxide capture technologies using activated carbon.
    Mukherjee A; Okolie JA; Abdelrasoul A; Niu C; Dalai AK
    J Environ Sci (China); 2019 Sep; 83():46-63. PubMed ID: 31221387
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CO
    Roefs P; Moretti M; Welkenhuysen K; Piessens K; Compernolle T
    J Environ Manage; 2019 Jun; 239():167-177. PubMed ID: 30901695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitigation of global greenhouse gas emissions from waste: conclusions and strategies from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report. Working Group III (Mitigation).
    Bogner J; Pipatti R; Hashimoto S; Diaz C; Mareckova K; Diaz L; Kjeldsen P; Monni S; Faaij A; Gao Q; Zhang T; Ahmed MA; Sutamihardja RT; Gregory R;
    Waste Manag Res; 2008 Feb; 26(1):11-32. PubMed ID: 18338699
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CO
    Anwar MN; Fayyaz A; Sohail NF; Khokhar MF; Baqar M; Khan WD; Rasool K; Rehan M; Nizami AS
    J Environ Manage; 2018 Nov; 226():131-144. PubMed ID: 30114572
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a hybrid photo-bioreactor and nanoparticle adsorbent system for the removal of CO
    Rocha AA; Wilde C; Hu Z; Nepotchatykh O; Nazarenko Y; Ariya PA
    J Environ Sci (China); 2017 Jul; 57():41-53. PubMed ID: 28647262
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular-Level Overhaul of γ-Aminopropyl Aminosilicone/Triethylene Glycol Post-Combustion CO
    Cantu DC; Malhotra D; Nguyen MT; Koech PK; Zhang D; Glezakou VA; Rousseau R; Page J; Zheng R; Perry RJ; Heldebrant DJ
    ChemSusChem; 2020 Jul; 13(13):3429-3438. PubMed ID: 32369677
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic Covalent Chemistry of Carbon Dioxide: Opportunities to Address Environmental Issues.
    Septavaux J; Germain G; Leclaire J
    Acc Chem Res; 2017 Jul; 50(7):1692-1701. PubMed ID: 28644617
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decarbonization of Power and Industrial Sectors: The Role of Membrane Processes.
    Kamolov A; Turakulov Z; Rejabov S; Díaz-Sainz G; Gómez-Coma L; Norkobilov A; Fallanza M; Irabien A
    Membranes (Basel); 2023 Jan; 13(2):. PubMed ID: 36837633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Economic leverage affords post-combustion capture of 43% of carbon emissions: Supersonic separators for methanol hydrate inhibitor recovery from raw natural gas and CO
    Teixeira AM; Arinelli LO; de Medeiros JL; Araújo OQF
    J Environ Manage; 2019 Apr; 236():534-550. PubMed ID: 30771673
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Critical review of existing nanomaterial adsorbents to capture carbon dioxide and methane.
    Alonso A; Moral-Vico J; Abo Markeb A; Busquets-Fité M; Komilis D; Puntes V; Sánchez A; Font X
    Sci Total Environ; 2017 Oct; 595():51-62. PubMed ID: 28376428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Postcombustion Carbon Capture Using Thin-Film Composite Membranes.
    Liu M; Nothling MD; Webley PA; Fu Q; Qiao GG
    Acc Chem Res; 2019 Jul; 52(7):1905-1914. PubMed ID: 31246007
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unexpected carbon dioxide inclusion in water-saturated pores of metal-organic frameworks with potential for highly selective capture of CO2.
    Kim D; Lim HK; Ro H; Kim H; Lee H
    Chemistry; 2015 Jan; 21(3):1125-9. PubMed ID: 25404494
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Holey graphene frameworks for highly selective post-combustion carbon capture.
    Chowdhury S; Balasubramanian R
    Sci Rep; 2016 Feb; 6():21537. PubMed ID: 26879393
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Easily regenerable solid adsorbents based on polyamines for carbon dioxide capture from the air.
    Goeppert A; Zhang H; Czaun M; May RB; Prakash GK; Olah GA; Narayanan SR
    ChemSusChem; 2014 May; 7(5):1386-97. PubMed ID: 24644023
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How Well Do We Know the Future of CO
    Martin NP; Bishop JD; Boies AM
    Environ Sci Technol; 2017 Mar; 51(5):3093-3101. PubMed ID: 28178418
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent advances in ionic liquids-based hybrid processes for CO
    Lian S; Song C; Liu Q; Duan E; Ren H; Kitamura Y
    J Environ Sci (China); 2021 Jan; 99():281-295. PubMed ID: 33183708
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amine-based CO2 capture technology development from the beginning of 2013-a review.
    Dutcher B; Fan M; Russell AG
    ACS Appl Mater Interfaces; 2015 Feb; 7(4):2137-48. PubMed ID: 25607244
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.