These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 31932661)

  • 21. Recent advances in ionic liquids-based hybrid processes for CO
    Lian S; Song C; Liu Q; Duan E; Ren H; Kitamura Y
    J Environ Sci (China); 2021 Jan; 99():281-295. PubMed ID: 33183708
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Amine-based CO2 capture technology development from the beginning of 2013-a review.
    Dutcher B; Fan M; Russell AG
    ACS Appl Mater Interfaces; 2015 Feb; 7(4):2137-48. PubMed ID: 25607244
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Flue-gas and direct-air capture of CO2 by porous metal-organic materials.
    Madden DG; Scott HS; Kumar A; Chen KJ; Sanii R; Bajpai A; Lusi M; Curtin T; Perry JJ; Zaworotko MJ
    Philos Trans A Math Phys Eng Sci; 2017 Jan; 375(2084):. PubMed ID: 27895255
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Poly(ionic liquid)/Ionic Liquid Ion-Gels with High "Free" Ionic Liquid Content: Platform Membrane Materials for CO2/Light Gas Separations.
    Cowan MG; Gin DL; Noble RD
    Acc Chem Res; 2016 Apr; 49(4):724-32. PubMed ID: 27046045
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Finely tuning MOFs towards high-performance post-combustion CO2 capture materials.
    Wang Q; Bai J; Lu Z; Pan Y; You X
    Chem Commun (Camb); 2016 Jan; 52(3):443-52. PubMed ID: 26512792
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Monitoring solid oxide CO2 capture sorbents in action.
    Keturakis CJ; Ni F; Spicer M; Beaver MG; Caram HS; Wachs IE
    ChemSusChem; 2014 Dec; 7(12):3459-66. PubMed ID: 25333791
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Carbon dioxide capture and use: organic synthesis using carbon dioxide from exhaust gas.
    Kim SH; Kim KH; Hong SH
    Angew Chem Int Ed Engl; 2014 Jan; 53(3):771-4. PubMed ID: 24307628
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Stabilization of carbon dioxide and chromium slag via carbonation.
    Wu X; Yu B; Xu W; Fan Z; Wu Z; Zhang H
    Environ Technol; 2017 Aug; 38(16):1997-2002. PubMed ID: 27766922
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The O2-assisted Al/CO2 electrochemical cell: A system for CO2 capture/conversion and electric power generation.
    Al Sadat WI; Archer LA
    Sci Adv; 2016 Jul; 2(7):e1600968. PubMed ID: 27453949
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Alkylamine-tethered stable metal-organic framework for CO(2) capture from flue gas.
    Hu Y; Verdegaal WM; Yu SH; Jiang HL
    ChemSusChem; 2014 Mar; 7(3):734-7. PubMed ID: 24464970
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Progress in biofixation of CO2 from combustion flue gas by microalgae].
    Zhang Y; Zhao B; Xiong K; Zhang Z; Hao X; Liu T
    Sheng Wu Gong Cheng Xue Bao; 2011 Feb; 27(2):164-71. PubMed ID: 21650040
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thermochemical and electrochemical aspects of carbon dioxide methanation: A sustainable approach to generate fuel via waste to energy theme.
    Ali N; Bilal M; Nazir MS; Khan A; Ali F; Iqbal HMN
    Sci Total Environ; 2020 Apr; 712():136482. PubMed ID: 31931218
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Carbon dioxide capture in biochar produced from pine sawdust and paper mill sludge: Effect of porous structure and surface chemistry.
    Igalavithana AD; Choi SW; Shang J; Hanif A; Dissanayake PD; Tsang DCW; Kwon JH; Lee KB; Ok YS
    Sci Total Environ; 2020 Oct; 739():139845. PubMed ID: 32758935
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Criteria pollutant and greenhouse gas emissions from CNG transit buses equipped with three-way catalysts compared to lean-burn engines and oxidation catalyst technologies.
    Yoon S; Collins J; Thiruvengadam A; Gautam M; Herner J; Ayala A
    J Air Waste Manag Assoc; 2013 Aug; 63(8):926-33. PubMed ID: 24010373
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Swellable, water- and acid-tolerant polymer sponges for chemoselective carbon dioxide capture.
    Woodward RT; Stevens LA; Dawson R; Vijayaraghavan M; Hasell T; Silverwood IP; Ewing AV; Ratvijitvech T; Exley JD; Chong SY; Blanc F; Adams DJ; Kazarian SG; Snape CE; Drage TC; Cooper AI
    J Am Chem Soc; 2014 Jun; 136(25):9028-35. PubMed ID: 24874971
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Efficient chemical fixation and defixation cycle of carbon dioxide under ambient conditions.
    Hajra S; Biswas A
    Sci Rep; 2020 Sep; 10(1):15825. PubMed ID: 32978419
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An LCA model for waste incineration enhanced with new technologies for metal recovery and application to the case of Switzerland.
    Boesch ME; Vadenbo C; Saner D; Huter C; Hellweg S
    Waste Manag; 2014 Feb; 34(2):378-89. PubMed ID: 24315553
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dual phase high-temperature membranes for CO
    Anantharaman R; Peters T; Xing W; Fontaine ML; Bredesen R
    Faraday Discuss; 2016 Oct; 192():251-269. PubMed ID: 27478073
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biomass-Derived Carbon Molecular Sieves Applied to an Enhanced Carbon Capture and Storage Process (e-CCS) for Flue Gas Streams in Shallow Reservoirs.
    Rodriguez Acevedo E; Franco CA; Carrasco-Marín F; Pérez-Cadenas AF; Cortés FB
    Nanomaterials (Basel); 2020 May; 10(5):. PubMed ID: 32443703
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reactive capture using metal looping: the effect of oxygen.
    Dowson GRM; Cooper J; Styring P
    Faraday Discuss; 2021 Jul; 230():292-307. PubMed ID: 33949573
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.