These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 31932669)

  • 1. Ordered three-dimensional nanomaterials using DNA-prescribed and valence-controlled material voxels.
    Tian Y; Lhermitte JR; Bai L; Vo T; Xin HL; Li H; Li R; Fukuto M; Yager KG; Kahn JS; Xiong Y; Minevich B; Kumar SK; Gang O
    Nat Mater; 2020 Jul; 19(7):789-796. PubMed ID: 31932669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-Stage Assembly of Nanoparticle Superlattices with Multiscale Organization.
    Dong Y; Liu J; Lu X; Duan J; Zhou L; Dai L; Ji M; Ma N; Wang Y; Wang P; Zhu JJ; Min Q; Gang O; Tian Y
    Nano Lett; 2022 May; 22(9):3809-3817. PubMed ID: 35468287
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlling the Self-Assembly of DNA Origami Octahedra via Manipulation of Inter-Vertex Interactions.
    Adhikari S; Minevich B; Redeker D; Michelson AN; Emamy H; Shen E; Gang O; Kumar SK
    J Am Chem Soc; 2023 Sep; 145(36):19578-19587. PubMed ID: 37651692
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Binary heterogeneous superlattices assembled from quantum dots and gold nanoparticles with DNA.
    Sun D; Gang O
    J Am Chem Soc; 2011 Apr; 133(14):5252-4. PubMed ID: 21425848
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complex wireframe DNA nanostructures from simple building blocks.
    Wang W; Chen S; An B; Huang K; Bai T; Xu M; Bellot G; Ke Y; Xiang Y; Wei B
    Nat Commun; 2019 Mar; 10(1):1067. PubMed ID: 30842408
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA-assembled superconducting 3D nanoscale architectures.
    Shani L; Michelson AN; Minevich B; Fleger Y; Stern M; Shaulov A; Yeshurun Y; Gang O
    Nat Commun; 2020 Nov; 11(1):5697. PubMed ID: 33173061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Programmable Atom Equivalents: Atomic Crystallization as a Framework for Synthesizing Nanoparticle Superlattices.
    Gabrys PA; Zornberg LZ; Macfarlane RJ
    Small; 2019 Jun; 15(26):e1805424. PubMed ID: 30970182
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Templated assembly of DNA origami gold nanoparticle arrays on lithographically patterned surfaces.
    Hung AM; Cha JN
    Methods Mol Biol; 2011; 749():187-97. PubMed ID: 21674373
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assembly, structure and optical response of three-dimensional dynamically tunable multicomponent superlattices.
    Xiong H; Sfeir MY; Gang O
    Nano Lett; 2010 Nov; 10(11):4456-62. PubMed ID: 20879781
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering Organization of DNA Nano-Chambers through Dimensionally Controlled and Multi-Sequence Encoded Differentiated Bonds.
    Lin Z; Emamy H; Minevich B; Xiong Y; Xiang S; Kumar S; Ke Y; Gang O
    J Am Chem Soc; 2020 Oct; 142(41):17531-17542. PubMed ID: 32902966
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Designed and biologically active protein lattices.
    Wang ST; Minevich B; Liu J; Zhang H; Nykypanchuk D; Byrnes J; Liu W; Bershadsky L; Liu Q; Wang T; Ren G; Gang O
    Nat Commun; 2021 Jun; 12(1):3702. PubMed ID: 34140491
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-assembly of complex two-dimensional shapes from single-stranded DNA tiles.
    Wei B; Vhudzijena MK; Robaszewski J; Yin P
    J Vis Exp; 2015 May; (99):e52486. PubMed ID: 25993048
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA based strategy to nanoparticle superlattices.
    Mazid RR; Si KJ; Cheng W
    Methods; 2014 May; 67(2):215-26. PubMed ID: 24508551
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional structures self-assembled from DNA bricks.
    Ke Y; Ong LL; Shih WM; Yin P
    Science; 2012 Nov; 338(6111):1177-83. PubMed ID: 23197527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Building DNA nanostructures for molecular computation, templated assembly, and biological applications.
    Rangnekar A; LaBean TH
    Acc Chem Res; 2014 Jun; 47(6):1778-88. PubMed ID: 24720350
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Programming nanoparticle valence bonds with single-stranded DNA encoders.
    Yao G; Li J; Li Q; Chen X; Liu X; Wang F; Qu Z; Ge Z; Narayanan RP; Williams D; Pei H; Zuo X; Wang L; Yan H; Feringa BL; Fan C
    Nat Mater; 2020 Jul; 19(7):781-788. PubMed ID: 31873228
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Triangular DNA Origami Tilings.
    Tikhomirov G; Petersen P; Qian L
    J Am Chem Soc; 2018 Dec; 140(50):17361-17364. PubMed ID: 30512944
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein Materials Engineering with DNA.
    McMillan JR; Hayes OG; Winegar PH; Mirkin CA
    Acc Chem Res; 2019 Jul; 52(7):1939-1948. PubMed ID: 31199115
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prescribed nanoparticle cluster architectures and low-dimensional arrays built using octahedral DNA origami frames.
    Tian Y; Wang T; Liu W; Xin HL; Li H; Ke Y; Shih WM; Gang O
    Nat Nanotechnol; 2015 Jul; 10(7):637-44. PubMed ID: 26005999
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toward three-dimensional microelectronic systems: directed self-assembly of silicon microcubes via DNA surface functionalization.
    Lämmerhardt N; Merzsch S; Ledig J; Bora A; Waag A; Tornow M; Mischnick P
    Langmuir; 2013 Jul; 29(26):8410-6. PubMed ID: 23786592
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.