These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

452 related articles for article (PubMed ID: 31932886)

  • 21. Leveraging Multimodal Deep Learning Architecture with Retina Lesion Information to Detect Diabetic Retinopathy.
    Tseng VS; Chen CL; Liang CM; Tai MC; Liu JT; Wu PY; Deng MS; Lee YW; Huang TY; Chen YH
    Transl Vis Sci Technol; 2020 Jul; 9(2):41. PubMed ID: 32855845
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optical imaging for diabetic retinopathy diagnosis and detection using ensemble models.
    Pavithra S; Jaladi D; Tamilarasi K
    Photodiagnosis Photodyn Ther; 2024 Aug; 48():104259. PubMed ID: 38944405
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Multi-Label Deep Learning Model with Interpretable Grad-CAM for Diabetic Retinopathy Classification.
    Jiang H; Xu J; Shi R; Yang K; Zhang D; Gao M; Ma H; Qian W
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():1560-1563. PubMed ID: 33018290
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bimodal learning via trilogy of skip-connection deep networks for diabetic retinopathy risk progression identification.
    Hua CH; Huynh-The T; Kim K; Yu SY; Le-Tien T; Park GH; Bang J; Khan WA; Bae SH; Lee S
    Int J Med Inform; 2019 Dec; 132():103926. PubMed ID: 31605882
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Automated identification of diabetic retinopathy stages using digital fundus images.
    Nayak J; Bhat PS; Acharya R; Lim CM; Kagathi M
    J Med Syst; 2008 Apr; 32(2):107-15. PubMed ID: 18461814
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fundus photograph-based deep learning algorithms in detecting diabetic retinopathy.
    Raman R; Srinivasan S; Virmani S; Sivaprasad S; Rao C; Rajalakshmi R
    Eye (Lond); 2019 Jan; 33(1):97-109. PubMed ID: 30401899
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs.
    Gulshan V; Peng L; Coram M; Stumpe MC; Wu D; Narayanaswamy A; Venugopalan S; Widner K; Madams T; Cuadros J; Kim R; Raman R; Nelson PC; Mega JL; Webster DR
    JAMA; 2016 Dec; 316(22):2402-2410. PubMed ID: 27898976
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Detection of microaneurysms using ant colony algorithm in the early diagnosis of diabetic retinopathy.
    Selçuk T; Alkan A
    Med Hypotheses; 2019 Aug; 129():109242. PubMed ID: 31371092
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Validation of Deep Convolutional Neural Network-based algorithm for detection of diabetic retinopathy - Artificial intelligence versus clinician for screening.
    Shah P; Mishra DK; Shanmugam MP; Doshi B; Jayaraj H; Ramanjulu R
    Indian J Ophthalmol; 2020 Feb; 68(2):398-405. PubMed ID: 31957737
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Grading of diabetic retinopathy from non-stereoscopic color fundus photographs--relationship to fluorescein angiography findings and three-year prognosis].
    Kitano S
    Nippon Ganka Gakkai Zasshi; 2005 Sep; 109(9):563-72. PubMed ID: 16218434
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Early versus late staining of microaneurysms in fluorescein angiography.
    Jalli PY; Hellstedt TJ; Immonen IJ
    Retina; 1997; 17(3):211-5. PubMed ID: 9196932
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Automated interpretation of retinal vein occlusion based on fundus fluorescein angiography images using deep learning: A retrospective, multi-center study.
    Huang S; Jin K; Gao Z; Yang B; Shi X; Zhou J; Grzybowski A; Gawecki M; Ye J
    Heliyon; 2024 Jul; 10(13):e33108. PubMed ID: 39027617
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An interpretable multiple-instance approach for the detection of referable diabetic retinopathy in fundus images.
    Papadopoulos A; Topouzis F; Delopoulos A
    Sci Rep; 2021 Jul; 11(1):14326. PubMed ID: 34253799
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microaneurysms detection in color fundus images using machine learning based on directional local contrast.
    Long S; Chen J; Hu A; Liu H; Chen Z; Zheng D
    Biomed Eng Online; 2020 Apr; 19(1):21. PubMed ID: 32295576
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multi-Cell Multi-Task Convolutional Neural Networks for Diabetic Retinopathy Grading.
    Zhou K; Gu Z; Liu W; Luo W; Cheng J; Gao S; Liu J
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2724-2727. PubMed ID: 30440966
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Systematic Comparison of Heatmapping Techniques in Deep Learning in the Context of Diabetic Retinopathy Lesion Detection.
    Van Craenendonck T; Elen B; Gerrits N; De Boever P
    Transl Vis Sci Technol; 2020 Dec; 9(2):64. PubMed ID: 33403156
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Automated segmentation of ultra-widefield fluorescein angiography of diabetic retinopathy using deep learning.
    Lee PK; Ra H; Baek J
    Br J Ophthalmol; 2023 Nov; 107(12):1859-1863. PubMed ID: 36241374
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Referable diabetic retinopathy identification from eye fundus images with weighted path for convolutional neural network.
    Liu YP; Li Z; Xu C; Li J; Liang R
    Artif Intell Med; 2019 Aug; 99():101694. PubMed ID: 31606108
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Diabetic Retinopathy Fundus Image Classification and Lesions Localization System Using Deep Learning.
    Alyoubi WL; Abulkhair MF; Shalash WM
    Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34073541
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Detection of retinal capillary nonperfusion in fundus fluorescein angiogram of diabetic retinopathy.
    Rasta SH; Nikfarjam S; Javadzadeh A
    Bioimpacts; 2015; 5(4):183-90. PubMed ID: 26929922
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.