BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 31933173)

  • 41. Characterization of a small metal binding protein from Nitrosomonas europaea.
    Barney BM; LoBrutto R; Francisco WA
    Biochemistry; 2004 Sep; 43(35):11206-13. PubMed ID: 15366930
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A missing link in cupredoxins: crystal structure of cucumber stellacyanin at 1.6 A resolution.
    Hart PJ; Nersissian AM; Herrmann RG; Nalbandyan RM; Valentine JS; Eisenberg D
    Protein Sci; 1996 Nov; 5(11):2175-83. PubMed ID: 8931136
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Preferred sites and pathways for electron transfer in blue copper proteins.
    Farver O; Pecht I
    Prog Clin Biol Res; 1988; 274():269-83. PubMed ID: 3406028
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Structural basis of a bi-functional malonyl-CoA reductase (MCR) from the photosynthetic green non-sulfur bacterium
    Zhang X; Xin J; Wang Z; Wu W; Liu Y; Min Z; Xin Y; Liu B; He J; Zhang X; Xu X
    mBio; 2023 Aug; 14(4):e0323322. PubMed ID: 37278533
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Spectroscopic characterization of carbon monoxide complexes generated for copper/topa quinone-containing amine oxidases.
    Hirota S; Iwamoto T; Tanizawa K; Adachi O; Yamauchi O
    Biochemistry; 1999 Oct; 38(43):14256-63. PubMed ID: 10571999
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mimicking biological electron transfer and oxygen activation involving iron and copper proteins: a bio(in)organic supramolecular approach.
    Feiters MC
    Met Ions Biol Syst; 2001; 38():461-655. PubMed ID: 11219019
    [No Abstract]   [Full Text] [Related]  

  • 47. Auracyanin B structure in space group P6(5).
    Lee M; Maher MJ; Freeman HC; Guss JM
    Acta Crystallogr D Biol Crystallogr; 2003 Sep; 59(Pt 9):1545-50. PubMed ID: 12925783
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The chemical biology of copper.
    Malmström BG; Leckner J
    Curr Opin Chem Biol; 1998 Apr; 2(2):286-92. PubMed ID: 9667936
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Generation of novel copper sites by mutation of the axial ligand of amicyanin. Atomic resolution structures and spectroscopic properties.
    Carrell CJ; Ma JK; Antholine WE; Hosler JP; Mathews FS; Davidson VL
    Biochemistry; 2007 Feb; 46(7):1900-12. PubMed ID: 17295442
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Factors which stabilize the methylamine dehydrogenase-amicyanin electron transfer protein complex revealed by site-directed mutagenesis.
    Davidson VL; Jones LH; Graichen ME; Mathews FS; Hosler JP
    Biochemistry; 1997 Oct; 36(42):12733-8. PubMed ID: 9335529
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A new molecular mechanics force field for the oxidized form of blue copper proteins.
    Comba P; Remenyi R
    J Comput Chem; 2002 May; 23(7):697-705. PubMed ID: 11948587
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Structural comparison of crystal and solution states of the 138 kDa complex of methylamine dehydrogenase and amicyanin from Paracoccus versutus.
    Cavalieri C; Biermann N; Vlasie MD; Einsle O; Merli A; Ferrari D; Rossi GL; Ubbink M
    Biochemistry; 2008 Jun; 47(25):6560-70. PubMed ID: 18512962
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Site-directed mutagenesis of proline 94 to alanine in amicyanin converts a true electron transfer reaction into one that is kinetically coupled.
    Sun D; Li X; Mathews FS; Davidson VL
    Biochemistry; 2005 May; 44(19):7200-6. PubMed ID: 15882058
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A strategy for the NMR characterization of type II copper(II) proteins: the case of the copper trafficking protein CopC from Pseudomonas Syringae.
    Arnesano F; Banci L; Bertini I; Felli IC; Luchinat C; Thompsett AR
    J Am Chem Soc; 2003 Jun; 125(24):7200-8. PubMed ID: 12797793
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The Type 1 Blue Copper Site: From Electron Transfer to Biological Function.
    Arcos-López T; Schuth N; Quintanar L
    Met Ions Life Sci; 2020 Mar; 20():. PubMed ID: 32851824
    [TBL] [Abstract][Full Text] [Related]  

  • 56. NMR structure of a lytic polysaccharide monooxygenase provides insight into copper binding, protein dynamics, and substrate interactions.
    Aachmann FL; Sørlie M; Skjåk-Bræk G; Eijsink VG; Vaaje-Kolstad G
    Proc Natl Acad Sci U S A; 2012 Nov; 109(46):18779-84. PubMed ID: 23112164
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Crystal structure determinations of oxidized and reduced pseudoazurins from Achromobacter cycloclastes. Concerted movement of copper site in redox forms with the rearrangement of hydrogen bond at a remote histidine.
    Inoue T; Nishio N; Suzuki S; Kataoka K; Kohzuma T; Kai Y
    J Biol Chem; 1999 Jun; 274(25):17845-52. PubMed ID: 10364229
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Spectroscopic studies of carotenoid-to-bacteriochlorophyll energy transfer in LHRC photosynthetic complex from Roseiflexus castenholzii.
    Niedzwiedzki DM; Collins AM; LaFountain AM; Enriquez MM; Frank HA; Blankenship RE
    J Phys Chem B; 2010 Jul; 114(26):8723-34. PubMed ID: 20545331
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Stopped-Flow Studies of the Reduction of the Copper Centers Suggest a Bifurcated Electron Transfer Pathway in Peptidylglycine Monooxygenase.
    Chauhan S; Hosseinzadeh P; Lu Y; Blackburn NJ
    Biochemistry; 2016 Apr; 55(13):2008-21. PubMed ID: 26982589
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Determination of the electron self-exchange rates of blue copper proteins by super-WEFT NMR spectroscopy.
    Ma L; Philipp E; Led JJ
    J Biomol NMR; 2001 Mar; 19(3):199-208. PubMed ID: 11330808
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.