These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

351 related articles for article (PubMed ID: 31933261)

  • 21. Chronic cerebral hypoperfusion alters amyloid-β transport related proteins in the cortical blood vessels of Alzheimer's disease model mouse.
    Shang J; Yamashita T; Tian F; Li X; Liu X; Shi X; Nakano Y; Tsunoda K; Nomura E; Sasaki R; Tadokoro K; Sato K; Takemoto M; Hishikawa N; Ohta Y; Abe K
    Brain Res; 2019 Nov; 1723():146379. PubMed ID: 31415766
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Regulated proteolysis of RAGE and AbetaPP as possible link between type 2 diabetes mellitus and Alzheimer's disease.
    Kojro E; Postina R
    J Alzheimers Dis; 2009; 16(4):865-78. PubMed ID: 19387119
    [TBL] [Abstract][Full Text] [Related]  

  • 23. D-ribosylation induces cognitive impairment through RAGE-dependent astrocytic inflammation.
    Han C; Lu Y; Wei Y; Wu B; Liu Y; He R
    Cell Death Dis; 2014 Mar; 5(3):e1117. PubMed ID: 24625976
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Beta-amyloid, neuronal death and Alzheimer's disease.
    Carter J; Lippa CF
    Curr Mol Med; 2001 Dec; 1(6):733-7. PubMed ID: 11899259
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Advanced glycation endproducts and pro-inflammatory cytokines in transgenic Tg2576 mice with amyloid plaque pathology.
    Münch G; Apelt J; Rosemarie-Kientsch-Engel ; Stahl P; Lüth HJ; Schliebs R
    J Neurochem; 2003 Jul; 86(2):283-9. PubMed ID: 12871569
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Beneficial Effects of Fingolimod in Alzheimer's Disease: Molecular Mechanisms and Therapeutic Potential.
    Angelopoulou E; Piperi C
    Neuromolecular Med; 2019 Sep; 21(3):227-238. PubMed ID: 31313064
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of Linguizhugan decoction on neuroinflammation and expression disorder of the amyloid β‑related transporters RAGE and LRP‑1 in a rat model of Alzheimer's disease.
    Hu Q; Yu B; Chen Q; Wang Y; Ling Y; Sun S; Shi Y; Zhou C
    Mol Med Rep; 2018 Jan; 17(1):827-834. PubMed ID: 29115637
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Serum or cerebrospinal fluid levels of glyceraldehyde-derived advanced glycation end products (AGEs) may be a promising biomarker for early detection of Alzheimer's disease.
    Yamagishi S; Nakamura K; Inoue H; Kikuchi S; Takeuchi M
    Med Hypotheses; 2005; 64(6):1205-7. PubMed ID: 15823718
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Glycation of Lys-16 and Arg-5 in amyloid-β and the presence of Cu
    Fica-Contreras SM; Shuster SO; Durfee ND; Bowe GJK; Henning NJ; Hill SA; Vrla GD; Stillman DR; Suralik KM; Sandwick RK; Choi S
    J Biol Inorg Chem; 2017 Dec; 22(8):1211-1222. PubMed ID: 29038915
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Neurons derived from sporadic Alzheimer's disease iPSCs reveal elevated TAU hyperphosphorylation, increased amyloid levels, and GSK3B activation.
    Ochalek A; Mihalik B; Avci HX; Chandrasekaran A; Téglási A; Bock I; Giudice ML; Táncos Z; Molnár K; László L; Nielsen JE; Holst B; Freude K; Hyttel P; Kobolák J; Dinnyés A
    Alzheimers Res Ther; 2017 Dec; 9(1):90. PubMed ID: 29191219
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Glycation vs. glycosylation: a tale of two different chemistries and biology in Alzheimer's disease.
    Taniguchi N; Takahashi M; Kizuka Y; Kitazume S; Shuvaev VV; Ookawara T; Furuta A
    Glycoconj J; 2016 Aug; 33(4):487-97. PubMed ID: 27325408
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Advanced glycation endproducts co-localize with inducible nitric oxide synthase in Alzheimer's disease.
    Wong A; Lüth HJ; Deuther-Conrad W; Dukic-Stefanovic S; Gasic-Milenkovic J; Arendt T; Münch G
    Brain Res; 2001 Nov; 920(1-2):32-40. PubMed ID: 11716809
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Impact of HMGB1, RAGE, and TLR4 in Alzheimer's Disease (AD): From Risk Factors to Therapeutic Targeting.
    Paudel YN; Angelopoulou E; Piperi C; Othman I; Aamir K; Shaikh MF
    Cells; 2020 Feb; 9(2):. PubMed ID: 32046119
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Aβ-AGE aggravates cognitive deficit in rats via RAGE pathway.
    Chen C; Li XH; Tu Y; Sun HT; Liang HQ; Cheng SX; Zhang S
    Neuroscience; 2014 Jan; 257():1-10. PubMed ID: 24188791
    [TBL] [Abstract][Full Text] [Related]  

  • 35. epsilon-Glycation, APP and Abeta in ageing and Alzheimer disease: a hypothesis.
    Schmitt HP
    Med Hypotheses; 2006; 66(5):898-906. PubMed ID: 16442744
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Are N- and C-terminally truncated Aβ species key pathological triggers in Alzheimer's disease?
    Dunys J; Valverde A; Checler F
    J Biol Chem; 2018 Oct; 293(40):15419-15428. PubMed ID: 30143530
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Common neurodegenerative pathways in obesity, diabetes, and Alzheimer's disease.
    Pugazhenthi S; Qin L; Reddy PH
    Biochim Biophys Acta Mol Basis Dis; 2017 May; 1863(5):1037-1045. PubMed ID: 27156888
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Current Views on the Role of Stress in the Pathogenesis of Chronic Neurodegenerative Diseases.
    Khaspekov LG
    Biochemistry (Mosc); 2021 Jun; 86(6):737-745. PubMed ID: 34225596
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Binding sites of amyloid beta-peptide in cell plasma membrane and implications for Alzheimer's disease.
    Verdier Y; Penke B
    Curr Protein Pept Sci; 2004 Feb; 5(1):19-31. PubMed ID: 14965318
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The role of advanced glycation end products in various types of neurodegenerative disease: a therapeutic approach.
    Salahuddin P; Rabbani G; Khan RH
    Cell Mol Biol Lett; 2014 Sep; 19(3):407-37. PubMed ID: 25141979
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.