BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 31933428)

  • 1. Recovery of rare earth elements from acid mine drainage by ion exchange.
    Felipe ECB; Batista KA; Ladeira ACQ
    Environ Technol; 2021 Jul; 42(17):2721-2732. PubMed ID: 31933428
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of iron in the rare earth elements and uranium scavenging by Fe-Al-precipitates in acid mine drainage.
    Moraes MLB; Ladeira ACQ
    Chemosphere; 2021 Aug; 277():130131. PubMed ID: 34384166
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Critical review of functionalized silica sorbent strategies for selective extraction of rare earth elements from acid mine drainage.
    Wilfong WC; Ji T; Duan Y; Shi F; Wang Q; Gray ML
    J Hazard Mater; 2022 Feb; 424(Pt C):127625. PubMed ID: 34857400
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biosorption of metal and salt tolerant microbial isolates from a former uranium mining area. Their impact on changes in rare earth element patterns in acid mine drainage.
    Haferburg G; Merten D; Büchel G; Kothe E
    J Basic Microbiol; 2007 Dec; 47(6):474-84. PubMed ID: 18072248
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rare Earth Element Accumulation and Fractionation in a Lake Ecosystem Impacted by Past Uranium Mining.
    Dang DH; Wang W; Evans RD
    Arch Environ Contam Toxicol; 2021 Nov; 81(4):589-599. PubMed ID: 34219186
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of anionic species on uranium separation from acid mine water using strong base resins.
    Ladeira AC; Gonçalves CR
    J Hazard Mater; 2007 Sep; 148(3):499-504. PubMed ID: 17420092
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recovery of rare earth elements from acidic mine waters: An unknown secondary resource.
    Hermassi M; Granados M; Valderrama C; Ayora C; Cortina JL
    Sci Total Environ; 2022 Mar; 810():152258. PubMed ID: 34896513
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Levels of rare earth elements, heavy metals and uranium in a population living in Baiyun Obo, Inner Mongolia, China: a pilot study.
    Hao Z; Li Y; Li H; Wei B; Liao X; Liang T; Yu J
    Chemosphere; 2015 Jun; 128():161-70. PubMed ID: 25703899
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mineralogical controls on mobility of rare earth elements in acid mine drainage environments.
    Soyol-Erdene TO; Valente T; Grande JA; de la Torre ML
    Chemosphere; 2018 Aug; 205():317-327. PubMed ID: 29704839
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recovery of Rare Earth Elements from Acid Mine Drainage with Supported Liquid Membranes: Impacts of Feedstock Composition for Extraction Performance.
    Middleton A; Hedin BC; Hsu-Kim H
    Environ Sci Technol; 2024 Feb; 58(6):2998-3006. PubMed ID: 38287223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Environmental and health risk assessment of agricultural areas adjacent to uranium ore fields in Brazil.
    Galhardi JA; de Mello JWV; Wilkinson KJ
    Environ Geochem Health; 2020 Nov; 42(11):3965-3981. PubMed ID: 32653967
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rare earth elements in uranium ore deposits from Namibia: A nuclear forensics tool.
    Madzunya D; Uushona V; Mathuthu M; Heike W
    J Environ Radioact; 2021 Oct; 237():106668. PubMed ID: 34116457
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The study of rare earth elements in farmer's well waters of the Podwiśniówka acid mine drainage area (south-central Poland).
    Migaszewski ZM; Gałuszka A; Migaszewski A
    Environ Monit Assess; 2014 Mar; 186(3):1609-22. PubMed ID: 24122124
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Geochemistry of rare earth elements in a passive treatment system built for acid mine drainage remediation.
    Prudêncio MI; Valente T; Marques R; Sequeira Braga MA; Pamplona J
    Chemosphere; 2015 Nov; 138():691-700. PubMed ID: 26247412
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Geochemical signatures of rare earth elements and yttrium exploited by acid solution mining around an ion-adsorption type deposit: Role of source control and potential for recovery.
    Liu H; Guo H; Pourret O; Wang Z; Liu M; Zhang W; Li Z; Gao B; Sun Z; Laine P
    Sci Total Environ; 2022 Jan; 804():150241. PubMed ID: 34798751
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extreme enrichment of arsenic and rare earth elements in acid mine drainage: Case study of Wiśniówka mining area (south-central Poland).
    Migaszewski ZM; Gałuszka A; Dołęgowska S
    Environ Pollut; 2019 Jan; 244():898-906. PubMed ID: 30469284
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ion-exchange of Pb2+, Cu2+, Zn2+, Cd2+, and Ni2+ ions from aqueous solution by Lewatit CNP 80.
    Pehlivan E; Altun T
    J Hazard Mater; 2007 Feb; 140(1-2):299-307. PubMed ID: 17045738
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorption kinetics, thermodynamics, and isotherm studies for functionalized lanthanide-chelating resins.
    Callura JC; Perkins KM; Baltrus JP; Washburn NR; Dzombak DA; Karamalidis AK
    J Colloid Interface Sci; 2019 Dec; 557():465-477. PubMed ID: 31541916
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation and application of anion exchange resins to measure groundwater uranium flux at a former uranium mill site.
    Stucker V; Ranville J; Newman M; Peacock A; Cho J; Hatfield K
    Water Res; 2011 Oct; 45(16):4866-76. PubMed ID: 21798572
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rare earth elements - Source and evolution in an aquatic system dominated by mine-Influenced waters.
    Gomes P; Valente T; Marques R; Prudêncio MI; Pamplona J
    J Environ Manage; 2022 Nov; 322():116125. PubMed ID: 36067672
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.