BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

419 related articles for article (PubMed ID: 31933677)

  • 1. Finite Element Modelling of Single Cell Based on Atomic Force Microscope Indentation Method.
    Wang L; Wang L; Xu L; Chen W
    Comput Math Methods Med; 2019; 2019():7895061. PubMed ID: 31933677
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Finite element modeling of living cells for AFM indentation-based biomechanical characterization.
    Liu Y; Mollaeian K; Ren J
    Micron; 2019 Jan; 116():108-115. PubMed ID: 30366196
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-cell mechanics--An experimental-computational method for quantifying the membrane-cytoskeleton elasticity of cells.
    Tartibi M; Liu YX; Liu GY; Komvopoulos K
    Acta Biomater; 2015 Nov; 27():224-235. PubMed ID: 26300334
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of membrane stiffness and cytoskeletal element density on mechanical stimuli within cells: an analysis of the consequences of ageing in cells.
    Xue F; Lennon AB; McKayed KK; Campbell VA; Prendergast PJ
    Comput Methods Biomech Biomed Engin; 2015; 18(5):468-76. PubMed ID: 23947334
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stiffness of cancer cells measured with an AFM indentation method.
    Hayashi K; Iwata M
    J Mech Behav Biomed Mater; 2015 Sep; 49():105-11. PubMed ID: 26004036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of indentation: implications for measuring mechanical properties with atomic force microscopy.
    Costa KD; Yin FC
    J Biomech Eng; 1999 Oct; 121(5):462-71. PubMed ID: 10529912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomechanical Heterogeneity of Living Cells: Comparison between Atomic Force Microscopy and Finite Element Simulation.
    Tang G; Galluzzi M; Zhang B; Shen YL; Stadler FJ
    Langmuir; 2019 Jun; 35(23):7578-7587. PubMed ID: 30272980
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of the properties of cell nucleus and underlying substrate on the response of finite element models of astrocytes undergoing mechanical stimulations.
    Atashgar F; Shafieian M; Abolfathi N
    Comput Methods Biomech Biomed Engin; 2023 Oct; 26(13):1572-1581. PubMed ID: 36324266
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Actin cytoskeleton stiffness grades metastatic potential of ovarian carcinoma Hey A8 cells via nanoindentation mapping.
    Zhou ZL; Sun XX; Ma J; Tong MH; To SKY; Wong AST; Ngan AHW
    J Biomech; 2017 Jul; 60():219-226. PubMed ID: 28711162
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coarse-grained elastic network modelling: A fast and stable numerical tool to characterize mesenchymal stem cells subjected to AFM nanoindentation measurements.
    Vaiani L; Migliorini E; Cavalcanti-Adam EA; Uva AE; Fiorentino M; Gattullo M; Manghisi VM; Boccaccio A
    Mater Sci Eng C Mater Biol Appl; 2021 Feb; 121():111860. PubMed ID: 33579492
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental and numerical analyses of local mechanical properties measured by atomic force microscopy for sheared endothelial cells.
    Ohashi T; Ishii Y; Ishikawa Y; Matsumoto T; Sato M
    Biomed Mater Eng; 2002; 12(3):319-27. PubMed ID: 12446947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anisotropy vs isotropy in living cell indentation with AFM.
    Efremov YM; Velay-Lizancos M; Weaver CJ; Athamneh AI; Zavattieri PD; Suter DM; Raman A
    Sci Rep; 2019 Apr; 9(1):5757. PubMed ID: 30962474
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel approach for extracting viscoelastic parameters of living cells through combination of inverse finite element simulation and Atomic Force Microscopy.
    Wei F; Yang H; Liu L; Li G
    Comput Methods Biomech Biomed Engin; 2017 Mar; 20(4):373-384. PubMed ID: 27627026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A finite element model of an osteoblast to quantify the transduction of exogenous forces to cellular components.
    Papadakis L; Kanakousaki D; Bakopoulou A; Tsouknidas A; Michalakis K
    Med Eng Phys; 2021 Aug; 94():61-69. PubMed ID: 34303503
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strain-dependent elastography of cancer cells reveals heterogeneity and stiffening due to attachment.
    Xu W; Kabariti S; Young KM; Swingle SP; Liu AY; Sulchek T
    J Biomech; 2023 Mar; 150():111479. PubMed ID: 36871429
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissecting the contribution of actin and vimentin intermediate filaments to mechanical phenotype of suspended cells using high-throughput deformability measurements and computational modeling.
    Gladilin E; Gonzalez P; Eils R
    J Biomech; 2014 Aug; 47(11):2598-605. PubMed ID: 24952458
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonlinear Cellular Mechanical Behavior Adaptation to Substrate Mechanics Identified by Atomic Force Microscope.
    Mollaeian K; Liu Y; Bi S; Wang Y; Ren J; Lu M
    Int J Mol Sci; 2018 Nov; 19(11):. PubMed ID: 30400365
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A three-dimensional finite element model of an adherent eukaryotic cell.
    McGarry JG; Prendergast PJ
    Eur Cell Mater; 2004 Apr; 7():27-33; discussion 33-4. PubMed ID: 15095253
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stiffness tomography by atomic force microscopy.
    Roduit C; Sekatski S; Dietler G; Catsicas S; Lafont F; Kasas S
    Biophys J; 2009 Jul; 97(2):674-7. PubMed ID: 19619482
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stiffness tomography of eukaryotic intracellular compartments by atomic force microscopy.
    Janel S; Popoff M; Barois N; Werkmeister E; Divoux S; Perez F; Lafont F
    Nanoscale; 2019 May; 11(21):10320-10328. PubMed ID: 31106790
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.